日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 函數(shù)y=f(x)(x∈R)滿足:對(duì)一切x∈R,f(x)≥0,f(x+1)=
          7-f2(x)
          ,當(dāng)x∈[0,1)時(shí),f(x)=
          x+2(0≤x<
          5
          -2)
          5
          (
          5
          -2≤x<1)
          則f(2011-
          3
          )
          =(  )
          A、
          2
          B、2-
          3
          C、2+
          3
          D、2
          2
          3
          -3
          分析:先根據(jù)條件對(duì)一切x∈R,f(x)≥0,f(x+1)=
          7-f2(x)
          ,等式兩邊同時(shí)平方得f2(x+1)+f2(x)=7,根據(jù)遞推關(guān)系可知f2(x+2)+f2(x+1)=7,兩式相減可求出函數(shù)的周期,然后根據(jù)周期將f(2011-
          3
          )化成f(3-
          3
          ),而f(2-
          3
          +1)=
          7-f2(2-
          3
          ,代入相應(yīng)的解析式,解之即可求出所求.
          解答:解:∵對(duì)一切x∈R,f(x)≥0,f(x+1)=
          7-f2(x)

          ∴f2(x+1)+f2(x)=7則f2(x+2)+f2(x+1)=7
          兩式相減得:f2(x+2)=f2(x)即f(x+2)=f(x)
          ∴f(2011-
          3
          )=f(3-
          3
          )=f(2-
          3
          +1)=
          7-f2(2-
          3

          而2-
          3
          5
          -2
          ∴f(2-
          3
          )=
          5

          ∴f(2011-
          3
          )=f(3-
          3
          )=f(2-
          3
          +1)=
          7-f2(2-
          3
          =
          2

          故選A
          點(diǎn)評(píng):本題主要考查了函數(shù)的值,以及函數(shù)的周期性,同時(shí)考查轉(zhuǎn)化的思想,屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•黃埔區(qū)一模)對(duì)于函數(shù)y=f(x)與常數(shù)a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個(gè)“P數(shù)對(duì)”;若f(2x)≥af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個(gè)“類P數(shù)對(duì)”.設(shè)函數(shù)f(x)的定義域?yàn)镽+,且f(1)=3.
          (1)若(1,1)是f(x)的一個(gè)“P數(shù)對(duì)”,求f(2n)(n∈N*);
          (2)若(-2,0)是f(x)的一個(gè)“P數(shù)對(duì)”,且當(dāng)x∈[1,2)時(shí)f(x)=k-|2x-3|,求f(x)在區(qū)間[1,2n)(n∈N*)上的最大值與最小值;
          (3)若f(x)是增函數(shù),且(2,-2)是f(x)的一個(gè)“類P數(shù)對(duì)”,試比較下列各組中兩個(gè)式子的大小,并說(shuō)明理由.
          ①f(2-n)與2-n+2(n∈N*);
          ②f(x)與2x+2(x∈(0,1]).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (選作題)定義在(-1,1)上的函數(shù)y=f(x)滿足:對(duì)任意x,y∈(-1,1)都有f(x)+f(y)=f(
          x+y
          1+xy
          )

          (1)判斷函數(shù)f(x)的奇偶性,并證明;
          (2)如果當(dāng)x∈(-1,0)時(shí),有f(x)>0,求證:f(x)在(-1,1)上是單調(diào)遞減函數(shù);
          (3)在(2)的條件下解不等式:f(x+
          1
          2
          )+f(
          1
          1-x
          )>0

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2011•順義區(qū)二模)對(duì)于定義域分別為M,N的函數(shù)y=f(x),y=g(x),規(guī)定:
          函數(shù)h(x)=
          f(x)•g(x),當(dāng)x∈M且x∈N
          f(x),當(dāng)x∈M且x∉N
          g(x),當(dāng)x∉M且x∈N

          (1)若函數(shù)f(x)=
          1
          x+1
          ,g(x)=x2+2x+2,x∈R
          ,求函數(shù)h(x)的取值集合;
          (2)若f(x)=1,g(x)=x2+2x+2,設(shè)bn為曲線y=h(x)在點(diǎn)(an,h(an))處切線的斜率;而{an}是等差數(shù)列,公差為1(n∈N*),點(diǎn)P1為直線l:2x-y+2=0與x軸的交點(diǎn),點(diǎn)Pn的坐標(biāo)為(an,bn).求證:
          1
          |P1P2|2
          +
          1
          |P1P3|2
          +…+
          1
          |P1Pn|2
          2
          5
          ;
          (3)若g(x)=f(x+α),其中α是常數(shù),且α∈[0,2π],請(qǐng)問(wèn),是否存在一個(gè)定義域?yàn)镽的函數(shù)y=f(x)及一個(gè)α的值,使得h(x)=cosx,若存在請(qǐng)寫(xiě)出一個(gè)f(x)的解析式及一個(gè)α的值,若不存在請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•浦東新區(qū)二模)已知函數(shù)y=f(x),x∈D,如果對(duì)于定義域D內(nèi)的任意實(shí)數(shù)x,對(duì)于給定的非零常數(shù)m,總存在非零常數(shù)T,恒有f(x+T)>m•f(x)成立,則稱函數(shù)f(x)是D上的m級(jí)類增周期函數(shù),周期為T(mén).若恒有f(x+T)=m•f(x)成立,則稱函數(shù)f(x)是D上的m級(jí)類周期函數(shù),周期為T(mén).
          (1)試判斷函數(shù)f(x)=log
          12
          (x-1)
          是否為(3,+∞)上的周期為1的2級(jí)類增周期函數(shù)?并說(shuō)明理由;
          (2)已知函數(shù)f(x)=-x2+ax是[3,+∞)上的周期為1的2級(jí)類增周期函數(shù),求實(shí)數(shù)a的取值范圍;
          (3)下面兩個(gè)問(wèn)題可以任選一個(gè)問(wèn)題作答,如果你選做了兩個(gè),我們將按照問(wèn)題(Ⅰ)給你記分.
          (Ⅰ)已知T=1,y=f(x)是[0,+∞)上m級(jí)類周期函數(shù),且y=f(x)是[0,+∞)上的單調(diào)遞增函數(shù),當(dāng)x∈[0,1)時(shí),f(x)=2x,求實(shí)數(shù)m的取值范圍.
          (Ⅱ)已知當(dāng)x∈[0,4]時(shí),函數(shù)f(x)=x2-4x,若f(x)是[0,+∞)上周期為4的m級(jí)類周期函數(shù),且y=f(x)的值域?yàn)橐粋(gè)閉區(qū)間,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2009•盧灣區(qū)一模)將奇函數(shù)的圖象關(guān)于原點(diǎn)(即(0,0))對(duì)稱這一性質(zhì)進(jìn)行拓廣,有下面的結(jié)論:
          ①函數(shù)y=f(x)滿足f(a+x)+f(a-x)=2b的充要條件是y=f(x)的圖象關(guān)于點(diǎn)(a,b)成中心對(duì)稱.
          ②函數(shù)y=f(x)滿足F(x)=f(x+a)-f(a)為奇函數(shù)的充要條件是y=f(x)的圖象關(guān)于點(diǎn)(a,f(a))成中心對(duì)稱(注:若a不屬于x的定義域時(shí),則f(a)不存在).
          利用上述結(jié)論完成下列各題:
          (1)寫(xiě)出函數(shù)f(x)=tanx的圖象的對(duì)稱中心的坐標(biāo),并加以證明.
          (2)已知m(m≠-1)為實(shí)數(shù),試問(wèn)函數(shù)f(x)=
          x+m
          x-1
          的圖象是否關(guān)于某一點(diǎn)成中心對(duì)稱?若是,求出對(duì)稱中心的坐標(biāo)并說(shuō)明理由;若不是,請(qǐng)說(shuō)明理由.
          (3)若函數(shù)f(x)=(x-
          2
          3
          )(|x+t|+|x-3|)-4
          的圖象關(guān)于點(diǎn)(
          2
          3
          ,f(
          2
          3
          ))
          成中心對(duì)稱,求t的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案