如圖,已知橢圓C: 的左、右焦點分別為
,離心率為
,點A是橢圓上任一點,
的周長為
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點任作一動直線l交橢圓C于
兩點,記
,若在線段
上取一點R,使得
,則當(dāng)直線l轉(zhuǎn)動時,點R在某一定直線上運動,求該定直線的方程.
(Ⅰ);(Ⅱ)
.
解析試題分析:(Ⅰ)利用三角形的周長為
及離心率可求解;(Ⅱ)利用
尋找
的坐標(biāo)與實數(shù)
之間的關(guān)系,再利用
關(guān)系找到點R的坐標(biāo)為(
)與
之間的關(guān)系,化簡求解.
試題解析:(Ⅰ)∵的周長為
,
∴即
. (1分)
又解得
(3分)
∴橢圓C的方程為 (4分)
(Ⅱ)由題意知,直線l的斜率必存在,
設(shè)其方程為
由
得 (6分)
則 (7分)
由,得
∴∴
. (8分)
設(shè)點R的坐標(biāo)為(),由
,
得
∴
解得 (10分)
而
∴ (13分)
故點R在定直線上. (14分)
考點:1.橢圓的定義;2.直線與圓的位置關(guān)系;3.向量共線.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C長軸的兩個頂點為A(-2,0),B(2,0),且其離心率為.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若N是直線x=2上不同于點B的任意一點,直線AN與橢圓C交于點Q,設(shè)直線QB與以NB為直徑的圓的一個交點為M(異于點B),求證:直線NM經(jīng)過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
橢圓的左、右焦點分別為F1(-1,0),F(xiàn)2(1,0),過F1作與x軸不重合的直線l交橢圓于A,B兩點.
(I)若ΔABF2為正三角形,求橢圓的離心率;
(II)若橢圓的離心率滿足,
為坐標(biāo)原點,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓,
為其右焦點,離心率為
.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若點,問是否存在直線
,使
與橢圓
交于
兩點,且
.若存在,求出
的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是橢圓
的右焦點,圓
與
軸交于
兩點,
是橢圓
與圓
的一個交點,且
.
(Ⅰ)求橢圓的離心率;
(Ⅱ)過點與圓
相切的直線
與
的另一交點為
,且
的面積等于
,求橢圓
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的四個頂點恰好是一邊長為2,一內(nèi)角為
的菱形的四個頂點.
(I)求橢圓的方程;
(II)直線與橢圓
交于
,
兩點,且線段
的垂直平分線經(jīng)過點
,求
(
為原點)面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知曲線,曲線
,P是平面上一點,若存在過點P的直線與
都有公共點,則稱P為“C1—C2型點”.
(1)在正確證明的左焦點是“C1—C2型點”時,要使用一條過該焦點的直線,試寫出一條這樣的直線的方程(不要求驗證);
(2)設(shè)直線與
有公共點,求證
,進而證明原點不是“C1—C2型點”;
(3)求證:圓內(nèi)的點都不是“C1—C2型點”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線C:(a>0,b>0)的左、右焦點分別為
、
,離心率為3,直線y=2與C的兩個交點間的距離為
.
(Ⅰ)求a,b;
(Ⅱ)設(shè)過的直線l與C的左、右兩支分別交于A、B兩點,且
,證明:
、
、
成等比數(shù)列.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com