日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 數(shù)列{an}的前n項(xiàng)和為Sn,若數(shù)列{an}的各項(xiàng)按如下規(guī)律排列:,,,,,,…,,,…,,…有如下運(yùn)算和結(jié)論:
          ①a24=
          ②數(shù)列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是等比數(shù)列;
          ③數(shù)列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…的前n項(xiàng)和為T(mén)n=;
          ④若存在正整數(shù)k,使Sk<10,Sk+1≥10,則ak=
          其中正確的結(jié)論是    .(將你認(rèn)為正確的結(jié)論序號(hào)都填上)
          【答案】分析:①前24項(xiàng)構(gòu)成的數(shù)列是:,,,,,,,,,,,…,,,,故a24=;
          ②數(shù)列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是,1,,2,…,由等差數(shù)列定義知:數(shù)列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是等差數(shù)列;
          ③數(shù)列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是等差數(shù)列,所以由等差數(shù)列前n項(xiàng)和公式可知:Tn=;
          ④由③知Sk<10,Sk+1≥10,即:,故ak=
          解答:解:①前24項(xiàng)構(gòu)成的數(shù)列是:,,,,,,,,,,…,,,
          ∴a24=,故①正確;
          ②數(shù)列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是,1,,2,…,
          由等差數(shù)列定義=(常數(shù))
          所以數(shù)列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是等差數(shù)列,故②不正確.
          ③∵數(shù)列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是等差數(shù)列,
          所以由等差數(shù)列前n項(xiàng)和公式可知:Tn=,故③正確;
          ④由③知Sk<10,Sk+1≥10,
          即:,∴k=7,ak=.故④正確.
          故答案為:①③④.
          點(diǎn)評(píng):本題主要考查探究數(shù)列的規(guī)律,轉(zhuǎn)化數(shù)列,構(gòu)造數(shù)列來(lái)研究相應(yīng)數(shù)列通項(xiàng)和前n項(xiàng)和問(wèn)題,這種題難度較大,必須從具體到一般地靜心研究,再推廣到一般得到結(jié)論.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)等比數(shù)列{an}的公比q≠1,Sn表示數(shù)列{an}的前n項(xiàng)的和,Tn表示數(shù)列{an}的前n項(xiàng)的乘積,Tn(k)表示{an}的前n項(xiàng)中除去第k項(xiàng)后剩余的n-1項(xiàng)的乘積,即Tn(k)=
          Tn
          ak
          (n,k∈N+,k≤n),則數(shù)列
          SnTn
          Tn(1)+Tn(2)+…+Tn(n)
          的前n項(xiàng)的和是
          a12
          2-q-q-1
          (n+nq-
          q-qn+1+1-q1-n
          1-q
          a12
          2-q-q-1
          (n+nq-
          q-qn+1+1-q1-n
          1-q
          (用a1和q表示)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          若數(shù)列{an}的通項(xiàng)an=
          1
          pn-q
          ,實(shí)數(shù)p,q滿足p>q>0且p>1,sn為數(shù)列{an}的前n項(xiàng)和.
          (1)求證:當(dāng)n≥2時(shí),pan<an-1;
          (2)求證sn
          p
          (p-1)(p-q)
          (1-
          1
          pn
          )

          (3)若an=
          1
          (2n-1)(2n+1-1)
          ,求證sn
          2
          3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知Sn是數(shù)列{an}的前n項(xiàng)和,an>0,Sn=
          a
          2
          n
          +an
          2
          ,n∈N*,
          (1)求證:{an}是等差數(shù)列;
          (2)若數(shù)列{bn}滿足b1=2,bn+1=2an+bn,求數(shù)列{bn}的通項(xiàng)公式bn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•商丘二模)數(shù)列{an}的前n項(xiàng)和為Sn,若數(shù)列{an}的各項(xiàng)按如下規(guī)律排列:
          1
          2
          1
          3
          ,
          2
          3
          1
          4
          ,
          2
          4
          ,
          3
          4
          ,
          1
          5
          ,
          2
          5
          3
          5
          ,
          4
          5
          …,
          1
          n
          ,
          2
          n
          ,…,
          n-1
          n
          ,…有如下運(yùn)算和結(jié)論:
          ①a24=
          3
          8

          ②數(shù)列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是等比數(shù)列;
          ③數(shù)列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…的前n項(xiàng)和為T(mén)n=
          n2+n
          4
          ;
          ④若存在正整數(shù)k,使Sk<10,Sk+1≥10,則ak=
          5
          7

          其中正確的結(jié)論是
          ①③④
          ①③④
          .(將你認(rèn)為正確的結(jié)論序號(hào)都填上)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          給出下列命題:
          ①若數(shù)列{an}的前n項(xiàng)和Sn=2n+1,則數(shù)列{an}為等比數(shù)列;
          ②在△ABC中,如果A=60°,a=
          6
          ,b=4
          ,那么滿足條件的△ABC有兩解;
          ③設(shè)函數(shù)f(x)=x|x-a|+b,則函數(shù)f(x)為奇函數(shù)的充要條件是a2+b2=0;
          ④設(shè)直線系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),則M中的直線所能?chē)傻恼切蚊娣e都相等.
          其中真命題的序號(hào)是

          查看答案和解析>>

          同步練習(xí)冊(cè)答案