日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,斜三棱柱ABC-A1B1C1的底面是直角三角形,AC⊥CB,∠ABC=45°,側(cè)面A1ABB1是邊長(zhǎng)為a的菱形,且垂直于底面ABC,∠A1AB=60°,E、F分別是AB1、BC的中點(diǎn).
          (1)求證EF∥平面A1ACC1
          (2)求EF與側(cè)面A1ABB1所成的角.
          分析:(1)由題意可得:E是A1B中點(diǎn).連A1C,所以EF∥A1C.再根據(jù)線面平行的判定定理可得線面平行.
          (2)作FG⊥AB交AB于G,連EG,可得FG⊥平面A1ABB1,即可得到∠FEG是EF與平面A1ABB1所成的角,再在△EFG中利用解三角形的有關(guān)知識(shí)解決問(wèn)題即可.
          解答:解:(1)證明:∵A1ABB1是菱形,E是AB1中點(diǎn),
          ∴E是A1B中點(diǎn).
          連A1C,
          ∵F是BC中點(diǎn),
          ∴EF∥A1C.
          ∵A1C?平面A1ACC1,EF?平面A1ACC1,
          ∴EF∥平面A1ACC1…(4分)
          (2)作FG⊥AB交AB于G,連EG,
          ∵側(cè)面A1ABB1⊥平面ABC且交線是AB,
          ∴FG⊥平面A1ABB1,
          ∴∠FEG是EF與平面A1ABB1所成的角
          由AB=a,AC⊥BC,∠ABC=45°,得FG=
          2
          2
          FB=
          a
          4
          =BG

          由AA1=AB=a,∠A1AB=60°,得EG=
          3
          4
          a

          tan∠FEG=
          3
          3
          ,
          ∴∠FEG=30°
          所以EF與側(cè)面A1ABB1所成的角為30°.
          點(diǎn)評(píng):解決此類問(wèn)題的關(guān)鍵是熟練掌握幾何體的結(jié)構(gòu)特征,以便熟悉幾何體中的線面關(guān)系,再利用有關(guān)的定理與定義求出線面角.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)已知如圖,斜三棱柱ABC-A1B1C1的側(cè)面A1ACC1與底面ABC垂直,∠ABC=90°,BC=2,AC=2
          3
          ,且AA1⊥A1C,AA1=A1C.
          (1)求側(cè)棱A1A與底面ABC所成角的大;
          (2)求側(cè)面A1ABB1與底面ABC所成二面角的大。
          (3)求頂點(diǎn)C到側(cè)面A1ABB1的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,斜三棱柱ABC-A1B1C1中,A1C1⊥BC1,AB⊥AC,AB=3,AC=2,側(cè)棱與底面成60°角.
          (1)求證:AC⊥面ABC1
          (2)求證:C1點(diǎn)在平面ABC上的射影H在直線AB上;
          (3)求此三棱柱體積的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,斜三棱柱ABC-A1B1C1的側(cè)面AA1C1C是面積為
          3
          2
          的菱形,∠ACC1為銳角,側(cè)面ABB1A1⊥側(cè)面AA1C1C,且A1B=AB=AC=1.
          (Ⅰ)求證:AA1⊥BC1
          (Ⅱ)求三棱錐A1-ABC的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•濰坊二模)如圖,斜三棱柱ABC-A1B1C1,側(cè)面BB1C1C⊥底面ABC,△BC1C是等邊三角形,AC⊥BC,AC=BC=4.
          (1)求證:AC⊥B
          C
           
          1

          (2)設(shè)D為BB1的中點(diǎn),求二面角D-AC-B的余弦值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案