日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=alnx-x2+1.

          (1)若曲線y=f(x)在x=1處的切線方程為4x-y+b=0,求實數(shù)a和b的值;

          (2)若a<0,且對任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范圍.

          【解析】第一問中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

          由已知得a-2=4,2-a=b,所以a=6,b=-4.

          第二問中,利用當a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

          不妨設0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,

          ∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1

          即f(x1)+x1≥f(x2)+x2,結合構造函數(shù)和導數(shù)的知識來解得。

          (1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

          由已知得a-2=4,2-a=b,所以a=6,b=-4.

          (2)當a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

          不妨設0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1

          ∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2,

          令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是減函數(shù),

          ∵g′(x)=-2x+1=(x>0),

          ∴-2x2+x+a≤0在x>0時恒成立,

          ∴1+8a≤0,a≤-,又a<0,

          ∴a的取值范圍是

           

          【答案】

          (1) a=6,b=-4.    (2)

           

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源:2012-2013學年江西省南昌市高一5月聯(lián)考數(shù)學卷(解析版) 題型:解答題

          已知函數(shù)f(x)= (a、b為常數(shù)),且方程f(x)-x+12=0有兩個實根為x1=3,x2=4.

          (1)求函數(shù)f(x)的解析式;

          (2)設k>1,解關于x的不等式f(x)< .

           

          查看答案和解析>>

          科目:高中數(shù)學 來源:2015屆遼寧盤錦市高一第一次階段考試數(shù)學試卷(解析版) 題型:解答題

          (12分)已知函數(shù)f(x)= (a,b為常數(shù),且a≠0),滿足f(2)=1,方程f(x)=x有唯一實數(shù)解,求函數(shù)f(x)的解析式和f[f(-4)]的值.

           

          查看答案和解析>>

          科目:高中數(shù)學 來源:2011-2012學年山東省萊蕪市高三上學期10月測試理科數(shù)學 題型:解答題

          (本小題滿分l2分)

          已知函數(shù)f(x)=a

           

          (1)求證:函數(shù)yf(x)在(0,+∞)上是增函數(shù);

           

          (2)f(x)<2x在(1,+∞)上恒成立,求實數(shù)a的取值范圍.

           

           

          查看答案和解析>>

          科目:高中數(shù)學 來源:2010-2011學年湖南省十二校高三第一次聯(lián)考數(shù)學文卷 題型:解答題

          ( (本小題滿分13分)

          已知函數(shù)f(x)=(a-1)xaln(x-2),(a<1).

          (1)討論函數(shù)f(x)的單調性;

          (2)設a<0時,對任意x1、x2∈(2,+∞),<-4恒成立,求a的取值范圍.

           

          查看答案和解析>>

          科目:高中數(shù)學 來源:2014屆黑龍江省高一期末考試文科數(shù)學 題型:解答題

          (12分)已知函數(shù)f(X)=㏒a(ax-1) (a>0且a≠1)

               (1)求函數(shù)的定義域   (2)討論函數(shù)f(X)的單調性

           

          查看答案和解析>>

          同步練習冊答案