日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2012•東莞市模擬)已知函數(shù)f(x)=2sinxcosx+cos2x(x∈R).
          (1)求f(x)的最小正周期和最大值;
          (2)若θ為銳角,且f(θ+
          π
          8
          )=
          2
          3
          ,求tan2θ的值.
          分析:(1)利用二倍角公式、兩角和的正弦函數(shù)化簡函數(shù)為一個角的一個三角函數(shù)的形式,然后求函數(shù)f(x)的最小正周期和最大值;
          (2)通過θ為銳角,且f(θ+
          π
          8
          )=
          2
          3
          ,求出cos2θ的值,sin2θ的值,然后求tan2θ的值.
          解答:(1)解:f(x)=2sinxcosx+cos2x=sin2x+cos2x(2分)
          =
          2
          (
          2
          2
          sin2x+
          2
          2
          cos2x)
          (3分)
          =
          2
          sin(2x+
          π
          4
          )
          .(4分)
          ∴f(x)的最小正周期為
          2
          ,最大值為
          2
          .(6分)
          (2)解:∵f(θ+
          π
          8
          )=
          2
          3
          ,∴
          2
          sin(2θ+
          π
          2
          )=
          2
          3
          .(7分)
          cos2θ=
          1
          3
          .(8分)
          ∵θ為銳角,即0<θ<
          π
          2
          ,∴0<2θ<π.
          sin2θ=
          1-cos2
          =
          2
          2
          3
          .(10分)
          tan2θ=
          sin2θ
          cos2θ
          =2
          2
          .(12分)
          點評:本小題主要考查三角函數(shù)性質(zhì),同角三角函數(shù)的基本關(guān)系、兩倍角公式等知識,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法和運(yùn)算求解能力.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•東莞市模擬)(ax-
          1
          x
          8的展開式中x2的系數(shù)為70,則實數(shù)a的值為
          1或-1
          1或-1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•東莞市模擬)設(shè)函數(shù)f(x)=logax(a為常數(shù)且a>0,a≠1),已知數(shù)列f(x1),f(x2),…,f(xn),…是公差為2的等差數(shù)列,且x1=a2
          (Ⅰ)求數(shù)列{xn}的通項公式;
          (Ⅱ)當(dāng)a=
          1
          2
          時,求證:x1+x2+…+xn
          1
          3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•東莞市模擬)一個幾何體的三視圖如圖所示,其中正視圖和側(cè)視圖是腰長為6的兩個全等的等腰直角三角形.
          (Ⅰ)請畫出該幾何體的直觀圖,并求出它的體積;
          (Ⅱ)用多少個這樣的幾何體可以拼成一個棱長為6的正方體ABCD-A1B1C1D1?試畫出圖形;
          (Ⅲ)在(Ⅱ)的情形下,設(shè)正方體ABCD-A1B1C1D1的棱CC1的中點為E,求平面AB1E與平面ABCD所成二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•東莞市模擬)已知函數(shù)f(x)=x2-ax(a≠0),g(x)=lnx,f(x)圖象與x軸異于原點的交點M處的切線為l1,g(x-1)與x軸的交點N處的切線為l2,并且l1與l2平行.
          (1)求f(2)的值;
          (2)已知實數(shù)t∈R,求函數(shù)y=f[xg(x)+t],x∈[1,e]的最小值;
          (3)令F(x)=g(x)+g′(x),給定x1,x2∈(1,+∞),x1<x2,對于兩個大于1的正數(shù)α,β,存在實數(shù)m滿足:α=mx1+(1-m)x2,β=(1-m)x1+mx2,并且使得不等式|F(α)-F(β)|<|F(x1)-F(x2)|恒成立,求實數(shù)m的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案