【題目】已知橢圓的一個(gè)焦點(diǎn)為
,其左頂點(diǎn)
在圓
上.
(Ⅰ)求橢圓的方程;
(Ⅱ)直線(xiàn)交橢圓
于
兩點(diǎn),設(shè)點(diǎn)
關(guān)于
軸的對(duì)稱(chēng)點(diǎn)為
(點(diǎn)
與點(diǎn)
不重合),且直線(xiàn)
與
軸的交于點(diǎn)
,試問(wèn)
的面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由.
【答案】(Ⅰ); (Ⅱ)1.
【解析】試題分析:(1)由橢圓C的左頂點(diǎn)A在圓x2+y2=12上,求得a,由橢圓的一個(gè)焦點(diǎn)得c=3,由b2=a2-c2得b,即可.
(2)由題意,N1(x2,-y2),可得直線(xiàn)NM的方程,令y=0,可得點(diǎn)P的坐標(biāo)為(4,0). 利用△PMN的面積為S= |PF||y1-y2|,化簡(jiǎn)了基本不等式的性質(zhì)即可得出.
試題解析:
(Ⅰ)∵橢圓的左頂點(diǎn)
在圓
上,∴
又∵橢圓的一個(gè)焦點(diǎn)為,∴
∴
∴橢圓的方程為
(Ⅱ)設(shè),則直線(xiàn)與橢圓
方程聯(lián)立
化簡(jiǎn)并整理得,
∴,
由題設(shè)知 ∴直線(xiàn)
的方程為
令得
∴點(diǎn)
(當(dāng)且僅當(dāng)即
時(shí)等號(hào)成立)
∴的面積存在最大值,最大值為1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x| >0},集合B={x|y=lg(﹣x2+3x+28)},集合C={x|m+1≤x≤2m﹣1}.
(1)求(RA)∩B;
(2)若B∪C=B,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)與
有相同的極值點(diǎn).
(I)求函數(shù)的解析式;
(II)證明:不等式(其中e為自然對(duì)數(shù)的底數(shù));
(III)不等式對(duì)任意
恒成立,求實(shí)數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知分別是橢圓
的左、右焦點(diǎn),離心率為
,
分別是橢圓的上、下頂點(diǎn),
.
(1)求橢圓的方程;
(2)過(guò)作直線(xiàn)與
交于
兩點(diǎn),求三角形
面積的最大值(
是坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)已知函數(shù)f(x)=|lnx|,正數(shù)a,b滿(mǎn)足a<b,且f(a)=f(b),若f(x)在區(qū)間[a2 , b]上的最大值為2,則2a+b=
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓經(jīng)過(guò)點(diǎn)
,且離心率為
.
(1)求橢圓的方程;
(2)設(shè)點(diǎn)在
軸上的射影為點(diǎn)
,過(guò)點(diǎn)
的直線(xiàn)
與橢圓
相交于
,
兩點(diǎn),且
,求直線(xiàn)
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓方程為
,雙曲線(xiàn)
的兩條漸近線(xiàn)分別為
,
,過(guò)橢圓
的右焦點(diǎn)作直線(xiàn)
,使
,又
與
交于點(diǎn)
,設(shè)直線(xiàn)
與橢圓
的兩個(gè)交點(diǎn)由上至下依次為
,
.
(1)若與
所成的銳角為
,且雙曲線(xiàn)的焦距為4,求橢圓
的方程;
(2)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2﹣4|x|+1,若f(x)在區(qū)間[a,2a+1]上的最大值為1,則a的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓經(jīng)過(guò)點(diǎn)
,離心率為
,動(dòng)點(diǎn)
.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)求以為直徑且被直線(xiàn)
截得的弦長(zhǎng)為2的圓的方程;
(Ⅲ)設(shè)是橢圓的右焦點(diǎn),過(guò)點(diǎn)
作
的垂線(xiàn)與以
為直徑的圓交于點(diǎn)
,證明:線(xiàn)段
的長(zhǎng)為定值,并求出這個(gè)定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com