日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知拋物線的焦點(diǎn)為F,過F的直線交拋物線于M、N兩點(diǎn),其準(zhǔn)線與x軸交于K點(diǎn).

          (1)求證:KF平分∠MKN;
          (2)O為坐標(biāo)原點(diǎn),直線MO、NO分別交準(zhǔn)線于點(diǎn)P、Q,求的最小值.

          (1)見解析;(2)8.

          解析試題分析:(1)只需證,設(shè)出M,N兩點(diǎn)坐標(biāo)和直線MN方程,再把直線方程與拋物線方程聯(lián)立,由韋達(dá)定理可得證;(2)由(1)設(shè)出的M,N兩點(diǎn)坐標(biāo)分別先求出P、Q兩點(diǎn)坐標(biāo),還是把設(shè)出的直線MN方程與拋物線方程聯(lián)立,由韋達(dá)定理把表示出來,再根據(jù)直線MN的傾斜角的范圍求的最小值.
          試題解析:(1)拋物線焦點(diǎn)坐標(biāo)為,準(zhǔn)線方程為.       2分
          設(shè)直線MN的方程為。設(shè)M、N的坐標(biāo)分別為
          ,   ∴.  4分
          設(shè)KM和KN的斜率分別為,顯然只需證即可. ∵
           ,        6分
          (2)設(shè)M、N的坐標(biāo)分別為,由M,O,P三點(diǎn)共線可求出P點(diǎn)的坐標(biāo)為,由N,O,Q三點(diǎn)共線可求出Q點(diǎn)坐標(biāo)為,    7分
          設(shè)直線MN的方程為。由

               9分
          又直線MN的傾斜角為,則 
           .10分
          同理可得.  13分
          (時(shí)取到等號(hào)) .       15分
          考點(diǎn):1、拋物線的方程及性質(zhì);2、直線與曲線相交的性質(zhì).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,已知是橢圓的右焦點(diǎn);圓軸交于兩點(diǎn),其中是橢圓的左焦點(diǎn).

          (1)求橢圓的離心率;
          (2)設(shè)圓軸的正半軸的交點(diǎn)為,點(diǎn)是點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),試判斷直線與圓的位置關(guān)系;
          (3)設(shè)直線與圓交于另一點(diǎn),若的面積為,求橢圓的標(biāo)準(zhǔn)方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (13分)如圖,某隧道設(shè)計(jì)為雙向四車道,車道總寬20m,要求通行車輛限高5m,隧道全長(zhǎng)2.5km,隧道的兩側(cè)是與地面垂直的墻,高度為3米,隧道上部拱線近似地看成半個(gè)橢圓。

          (1)若最大拱高h(yuǎn)為6 m,則隧道設(shè)計(jì)的拱寬是多少?
          (2)若要使隧道上方半橢圓部分的土方工程 量最小,則應(yīng)如何設(shè)計(jì)拱高h(yuǎn)和拱寬?(已知:橢圓+=1的面積公式為S=,柱體體積為底面積乘以高。)
          (3)為了使隧道內(nèi)部美觀,要求在拱線上找兩個(gè)點(diǎn)M、N,使它們所在位置的高度恰好是限高5m,現(xiàn)以M、N以及橢圓的左、右頂點(diǎn)為支點(diǎn),用合金鋼板把隧道拱線部分連接封閉,形成一個(gè)梯形,若l=30m,梯形兩腰所在側(cè)面單位面積的鋼板造價(jià)是梯形頂部單位面積鋼板造價(jià)的倍,試確定M、N的位置以及的值,使總造價(jià)最少。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知圓錐曲線的兩個(gè)焦點(diǎn)坐標(biāo)是,且離心率為
          (Ⅰ)求曲線的方程;
          (Ⅱ)設(shè)曲線表示曲線軸左邊部分,若直線與曲線相交于兩點(diǎn),求的取值范圍;
          (Ⅲ)在條件(Ⅱ)下,如果,且曲線上存在點(diǎn),使,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓的方程為,雙曲線的左、右焦點(diǎn)分別為的左、右頂點(diǎn),而的左、右頂點(diǎn)分別是的左、右焦點(diǎn)。
          (1)求雙曲線的方程;
          (2)若直線與橢圓及雙曲線都恒有兩個(gè)不同的交點(diǎn),且L與的兩個(gè)焦點(diǎn)A和B滿足(其中O為原點(diǎn)),求的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓的離心率為,其左焦點(diǎn)到點(diǎn)的距離為.
          (1)求橢圓的方程;
          (2)過右焦點(diǎn)的直線與橢圓交于不同的兩點(diǎn)、,則內(nèi)切圓的圓面積是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)的直線方程;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓的中心在原點(diǎn),離心率,右焦點(diǎn)為.
          (Ⅰ)求橢圓的方程;
          (Ⅱ)設(shè)橢圓的上頂點(diǎn)為,在橢圓上是否存在點(diǎn),使得向量共線?若存在,求直線的方程;若不存在,簡(jiǎn)要說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓的焦點(diǎn)為,,且經(jīng)過點(diǎn).
          (Ⅰ)求橢圓的方程;
          (Ⅱ)設(shè)過的直線與橢圓交于、兩點(diǎn),問在橢圓上是否存在一點(diǎn),使四邊形為平行四邊形,若存在,求出直線的方程,若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          曲線在矩陣的變換作用下得到曲線
          (Ⅰ)求矩陣;
          (Ⅱ)求矩陣的特征值及對(duì)應(yīng)的一個(gè)特征向量.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案