日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,在直三棱柱ABC-A′B′C′中,點(diǎn)D是BC的中點(diǎn),∠ACB=90°,AC=BC=1,AA′=2,
          (1)欲過(guò)點(diǎn)A′作一截面與平面AC'D平行,問(wèn)應(yīng)當(dāng)怎樣畫線,寫出作法,并說(shuō)明理由;
          (2)求異面直線BA′與 C′D所成角的余弦值.
          分析:(1)取B′C′的中點(diǎn)E,連接A′E,BE,A′B,根據(jù)面面平行的判定定理證明平面AC′D∥平面A′BE;
          (2)證明∠A′BE為異面直線BA′與 C′D所成角,解△A′BE,利用余弦定理求得∠A′BE的余弦值.
          解答:解:(1)取B′C′的中點(diǎn)E,連接A′E,BE,A′B,
          ∵截面與平面AC'D平行,∴截面與平面BCC′B′的交線BE∥BC′,∵D是BC的中點(diǎn),∴E是B′C′的中點(diǎn);
          ∵A′E∥AD,∴A′E∥平面AC′D,又A′E∩BE=E,∴平面AC′D∥平面A′BE.
          (2)∵BE∥DC′,∴∠A′BE為異面直線BA′與 C′D所成角,
          ∵∠ACB=90°,
          ∴在△A′BE中,BE=
          17
          2
          ,A′B=
          6
          ,A′E=
          5
          2
          ,
          ∴cos∠A′BE=
          BE2+A′B2-A′E2
          2×BE×AB
          =
          3
          102
          34

          精英家教網(wǎng)
          點(diǎn)評(píng):本題考查了面面平行的性質(zhì)與判定,考查了異面直線所成的角及求法,考查了學(xué)生的空間想象能力與運(yùn)算能力,解題的關(guān)鍵是熟練掌握面面平行的判定定理與性質(zhì)定理.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延長(zhǎng)線與A1C1的延長(zhǎng)線的交點(diǎn),且PB1∥平面BDA.

          (I)求證:CD=C1D:

          (II)求二面角A-A1D-B的平面角的余弦值; 

          (Ⅲ)求點(diǎn)C到平面B1DP的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2011年四川省招生統(tǒng)一考試?yán)砜茢?shù)學(xué) 題型:解答題

           

           (本小題共l2分)

              如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[來(lái)源:]

          P是AD的延長(zhǎng)線與A1C1的延長(zhǎng)線的交點(diǎn),且PB1∥平面BDA.

          (I)求證:CD=C1D:

          (II)求二面角A-A1D-B的平面角的余弦值;   

          (Ⅲ)求點(diǎn)C到平面B1DP的距離.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2011年高考試題數(shù)學(xué)理(四川卷)解析版 題型:解答題

           (本小題共l2分)

              如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

          P是AD的延長(zhǎng)線與A1C1的延長(zhǎng)線的交點(diǎn),且PB1∥平面BDA.

          (I)求證:CD=C1D:

          (II)求二面角A-A1D-B的平面角的余弦值;   

          (Ⅲ)求點(diǎn)C到平面B1DP的距離.

           

           

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:四川省高考真題 題型:解答題

          如圖,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一點(diǎn),P是AD的延長(zhǎng)線與A1C1的延長(zhǎng)線的交點(diǎn),且PB1∥平面BDA。
          (I)求證:CD=C1D;
          (II)求二面角A-A1D-B的平面角的余弦值;
          (Ⅲ)求點(diǎn)C到平面B1DP的距離

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

              如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一點(diǎn),P是AD的延長(zhǎng)線與A1C1的延長(zhǎng)線的交點(diǎn),且PB1∥平面BDA.

          (I)求證:CD=C1D:

          (II)求二面角A-A1D-B的平面角的余弦值;

          (Ⅲ)求點(diǎn)C到平面B1DP的距離.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案