日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 函數(shù),其中P、M為實(shí)數(shù)集R的兩個(gè)非空子集,又規(guī)定f(P)={y|y=f(x),x∈P},f(M)={y|y=f(x),x∈M},給出下列四個(gè)判斷:
          ①若P∩M=,則f(P)∩f(M)=;②若P∩M≠,則f(P)∩f(M)≠
          ③若P∪M=R,則f(P)∪f(wàn)(M)=R; ④若P∪M≠R,則f(P)∪f(wàn)(M)≠R;
          其中正確判斷有
          [     ]
          A.3個(gè)
          B.2個(gè)
          C.1個(gè)
          D.0個(gè)
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=alnx-bx2圖象上一點(diǎn)P(2,f(2))處的切線方程為y=-3x+2ln2+2.
          (1)求a,b的值;
          (2)若方程f(x)+m=0在[
          1e
          , e]
          內(nèi)有兩個(gè)不等實(shí)根,求m的取值范圍(其中e為自然對(duì)數(shù)的底).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=alnx-bx2圖象上一點(diǎn)P(2,f(2))處的切線方程為y=-3x+2ln2+2.
          (Ⅰ)求a,b的值;
          (Ⅱ)若方程f(x)+m=0在[
          1e
          ,e]
          內(nèi)有兩個(gè)不等實(shí)根,求m的取值范圍(其中e為自然對(duì)數(shù)的底數(shù));
          (Ⅲ)令g(x)=f(x)-kx,若g(x)的圖象與x軸交于A(x1,0),B(x2,0)(其中x1<x2),AB的中點(diǎn)為C(x0,0),求證:g(x)在x0處的導(dǎo)數(shù)g′(x0)≠0.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知以下四個(gè)命題:
          ①如果x1,x2是一元二次方程的兩個(gè)實(shí)根,且x1<x2,那么不等式ax2+bx+c<0的解集為{x|x1<x<x2};
          ②若f(x)是奇函數(shù),則f(0)=0;
          ③若集合P={x|x=3m+1,m∈N+},Q={x|x=5n+2,n∈N+},則P∩Q={x|x=15m-8,m∈N+}
          ④若函數(shù)f(x)在(-∞,+∞)上遞增,且a+b≥0,則f(a)+f(b)≥f(-a)+f(-b).
          其中為真命題的是
           
          (填上你認(rèn)為正確的序號(hào)).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=alnx-bx2圖象上一點(diǎn)P(2,f(2))處的切線方程為y=-3x+2ln2+2
          (1)求a,b的值;
          (2)若方程f(x)+m=0在[
          1e
          ,e]
          內(nèi)有兩個(gè)不等實(shí)根,求實(shí)數(shù)m的取值范圍(其中e為自然對(duì)數(shù)的底,e≈2.7);
          (3)令g(x)=f(x)-nx,如果g(x)圖象與x軸交于A(x1,0),B(x2,0),x1<x2,AB中點(diǎn)為C(x0,0),求證:g′(x0)≠0.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=2lnx-x2(x>0).
          (1)求函數(shù)f(x)的單調(diào)區(qū)間與最值;
          (2)若方程2xlnx+mx-x3=0在區(qū)間[
          1e
          ,e]
          內(nèi)有兩個(gè)不相等的實(shí)根,求實(shí)數(shù)m的取值范圍;  (其中e為自然對(duì)數(shù)的底數(shù))
          (3)如果函數(shù)g(x)=f(x)-ax的圖象與x軸交于兩點(diǎn)A(x1,0),B(x2,0),且0<x1<x2,求證:g'(px1+qx2)<0(其中,g'(x)是g(x)的導(dǎo)函數(shù),正常數(shù)p,q滿足p+q=1,q>p)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案