日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若實數(shù)x,y滿足不等式組
          x-2≤0
          y-1≤0
          x-2y-a≥0
          ,目標函數(shù)t=x-2y的最大值為2,則實數(shù)a的值是( 。
          A、-2B、0C、1D、2
          分析:先畫出可行域,結(jié)合圖形分析出目標函數(shù)t=x-2y取得最大值時對應(yīng)點的坐標,把其代入目標函數(shù)再結(jié)合目標函數(shù)t=x-2y的最大值為2即可求出實數(shù)a的值.
          解答:精英家教網(wǎng)解:實數(shù)x,y滿足不等式組
          x-2≤0
          y-1≤0
          x-2y-a≥0
          如圖,
          顯然當x=2,y=
          a-2
          2
          時,
          目標函數(shù)t=x-2y取得最大值,
          即2=2-2×
          2-a
          2
          ,
          解得:a=2
          故選D.
          點評:本題主要考查簡單線性規(guī)劃的應(yīng)用以及數(shù)形結(jié)合思想的應(yīng)用.在求目標函數(shù)的最值時,一般是在可行域的特殊點處,所以一般在解選擇和填空題時,常用特殊點代入法.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          定義在R上的函數(shù)y=f(x),若對任意不等實數(shù)x1,x2滿足
          f(x1)-f(x2)
          x1-x2
          <0
          ,且對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(1,0)對稱,則當 1≤x≤4時,
          y
          x
          的取值范圍為
          [-
          1
          2
          ,1]
          [-
          1
          2
          ,1]

          查看答案和解析>>

          科目:高中數(shù)學 來源:2008-2009學年重慶一中高三(上)10月月考數(shù)學試卷(理科)(解析版) 題型:填空題

          定義在R上的函數(shù)y=f(x),若對任意不等實數(shù)x1,x2滿足,且對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(1,0)對稱,則當 1≤x≤4時,的取值范圍為   

          查看答案和解析>>

          科目:高中數(shù)學 來源:2012年山東省實驗中學高考數(shù)學三模試卷(文科)(解析版) 題型:填空題

          定義在R上的函數(shù)y=f(x),若對任意不等實數(shù)x1,x2滿足,且對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(1,0)對稱,則當 1≤x≤4時,的取值范圍為   

          查看答案和解析>>

          科目:高中數(shù)學 來源:2013年山東省淄博市高考數(shù)學模擬試卷3(理科)(解析版) 題型:填空題

          定義在R上的函數(shù)y=f(x),若對任意不等實數(shù)x1,x2滿足,且對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(1,0)對稱,則當 1≤x≤4時,的取值范圍為   

          查看答案和解析>>

          科目:高中數(shù)學 來源:2012年山東省實驗中學高考數(shù)學三模試卷(理科)(解析版) 題型:解答題

          定義在R上的函數(shù)y=f(x),若對任意不等實數(shù)x1,x2滿足,且對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(1,0)對稱,則當 1≤x≤4時,的取值范圍為   

          查看答案和解析>>

          同步練習冊答案