日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知f(x)=2x3-6x2+a(a為常數(shù))在[-2,2]上有最大值3,那么此函數(shù)在[-2,2]上的值域是( 。
          分析:先求導(dǎo)數(shù),根據(jù)單調(diào)性研究函數(shù)的極值點,在開區(qū)間(-2,2)上只有一極大值則就是最大值,從而求出a,通過比較兩個端點-2和2的函數(shù)值的大小從而確定出最小值,得到結(jié)論.
          解答:解:由已知,f′(x)=6x2-12x,由6x2-12x≥0得x≥2或x≤0,
          因此當(dāng)x∈[2,+∞),(-∞,0]時f(x)為增函數(shù),在x∈[0,2]時f(x)為減函數(shù),
          又因為x∈[-2,2],
          所以得,當(dāng)x∈[-2,0]時f(x)為增函數(shù),
          在x∈[0,2]時f(x)為減函數(shù),
          所以f(x)max=f(0)=a=3,故有f(x)=2x3-6x2+3
          所以f(-2)=-37,f(2)=-5
          因為f(-2)=-37<f(2)=-5,所以函數(shù)f(x)的最小值為f(-2)=-37.
          從而值域為[-37,3]
          故選A
          點評:本題考查了利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,求函數(shù)在閉區(qū)間[a,b]上的最大值與最小值是通過比較函數(shù)在(a,b)內(nèi)所有極值與端點函數(shù)f(a),f(b) 比較而得到的,屬于基礎(chǔ)
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          10、已知f(x)=2x3-6x+m(m為常數(shù)),在[0,2]上有最大值3,那么此函數(shù)在[0,2]上的最小值為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知f(x)=2x3+ax與g(x)=bx2+c的圖象都過點P(2,0),且在點P處有公共切線,求f(x),g(x)的表達(dá)式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知f(x)=-2x3+6x2+m(m為常數(shù))在[-2,2]上有最小值3,那么此函數(shù)在[-2,2]上的最大值為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知f(x)=2x3+ax2+b-1是奇函數(shù),則a-b=
          -1
          -1

          查看答案和解析>>

          同步練習(xí)冊答案