日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=x3-3ax2+3x+1.
          (Ⅰ)設a=2,求f(x)的單調(diào)區(qū)間;
          (Ⅱ)設f(x)在區(qū)間(2,3)內(nèi)至少有一個極值點,求a的取值范圍.
          分析:(1)求導函數(shù),利用導數(shù)大于0,可得f(x)的單調(diào)增區(qū)間,利用導數(shù)小于0,可得f(x)的單調(diào)減區(qū)間;
          (2)f(x)在區(qū)間(2,3)中至少有一個極值點,等價于方程f′(x)=0在其判別式△>0(即a>1或a<-1)的條件下在區(qū)間(2,3)有解.
          解答:解:(Ⅰ)由f(x)=x3-3ax2+3x+1得f′(x)=3x2-6ax+3
          當a=2時,f′(x)=3x2-6ax+3=3x2-12x+3=3(x2-4x+1)
          由f′(x)=3(x2-4x+1)>0得x>2+
          3
          x<2-
          3
          ;
          由f′(x)=3(x2-4x+1)<0得2-
          3
          <x<2+
          3
          ;
          所以f(x)的單調(diào)遞增區(qū)間是(-∞,2-
          3
          ]
          [2+
          3
          ,+∞)
          ,f(x)的單調(diào)遞減區(qū)間是[2-
          3
          ,2+
          3
          ]

          (Ⅱ)∵f′(x)=3x2-6ax+3,而f(x)在區(qū)間(2,3)中至少有一個極值點,
          等價于方程3x2-6ax+3=0在其判別式△>0(即a>1或a<-1)的條件下在區(qū)間(2,3)有解.
          ∴由3x2-6ax+3=0可得a=
          1
          2
          (x+
          1
          x
          ),
          令g(x)=
          1
          2
          (x+
          1
          x
          ),求導函數(shù)可得g′(x)=
          1
          2
          (1-
          1
          x2
          ),
          ∴g′(x)>0在(2,3)上恒成立,即g(x)>0在(2,3)上單調(diào)遞增,
          5
          4
          1
          2
          (x+
          1
          x
          )<
          5
          3

          解得
          5
          4
          <a<
          5
          3
          ,
          所以a的取值范圍是
          5
          4
          <a<
          5
          3
          點評:本題考查導數(shù)知識的運用,考查函數(shù)的單調(diào)性,考查學生分析解決問題的能力,解題的關鍵是f(x)在區(qū)間(2,3)中至少有一個極值點轉(zhuǎn)化為方程f′(x)=0在其判別式△>0(即a>1或a<-1)的條件下在區(qū)間(2,3)有解.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
          π
          2
          )的部分圖象如圖所示,則f(x)的解析式是( 。
          A、f(x)=2sin(πx+
          π
          6
          )(x∈R)
          B、f(x)=2sin(2πx+
          π
          6
          )(x∈R)
          C、f(x)=2sin(πx+
          π
          3
          )(x∈R)
          D、f(x)=2sin(2πx+
          π
          3
          )(x∈R)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2012•深圳一模)已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2011•上海模擬)已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當a=1,b=2時,求f(x)的最小值;
          (2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
          (3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學 來源:上海模擬 題型:解答題

          已知函數(shù)f(x)=(
          x
          a
          -1)2+(
          b
          x
          -1)2,x∈(0,+∞)
          ,其中0<a<b.
          (1)當a=1,b=2時,求f(x)的最小值;
          (2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
          (3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
          求證:f1(x)+f2(x)>
          4c2
          k(k+c)

          查看答案和解析>>

          科目:高中數(shù)學 來源:深圳一模 題型:解答題

          已知函數(shù)f(x)=
          1
          3
          x3+bx2+cx+d
          ,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
          (1)求f(x);
          (2)設g(x)=x
          f′(x)
           , m>0
          ,求函數(shù)g(x)在[0,m]上的最大值;
          (3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

          查看答案和解析>>

          同步練習冊答案