日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知,若函數(shù)不存在零點(diǎn),則c的取值范圍是_________。

           

          【答案】

          【解析】略

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知二次函數(shù)f(x)=x2-ax+a(x∈R)同時(shí)滿足:①不等式f(x)≤0的解集有且只有一個(gè)元素;②在定義域內(nèi)存在0<x1<x2,使得不等式f(x1)>f(x2)成立.設(shè)數(shù)列{an}的前n項(xiàng)和Sn=f(n).
          (1)求函數(shù)f(x)的表達(dá)式;
          (2)求數(shù)列{an}的通項(xiàng)公式;
          (3)在各項(xiàng)均不為零的數(shù)列{cn}中,若ci•ci+1<0,則稱ci,ci+1為這個(gè)數(shù)列{cn}一對變號項(xiàng).令cn=1-
          aan
          (n為正整數(shù)),求數(shù)列{cn}的變號項(xiàng)的對數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知二次函數(shù)f(x)=x2-ax+a(x∈R)同時(shí)滿足:①不等式f(x)≤0的解集有且只有一個(gè)元素;②在定義域內(nèi)存在0<x1<x2,使得不等式f(x1)>f(x2)成立.
          設(shè)數(shù)列{an}的前n項(xiàng)和Sn=f(n).
          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)若bn=n-k(n∈N*,k∈R)滿足:對任意的正整數(shù)n都有bn<an,求k的取值范圍
          (3)設(shè)各項(xiàng)均不為零的數(shù)列{cn}中,所有滿足ci•ci+1<0的正整數(shù)i的個(gè)數(shù)稱為這個(gè)數(shù)列{cn}的變號數(shù).令cn=1-
          aan
          (n為正整數(shù)),求數(shù)列{cn}的變號數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2014•長寧區(qū)一模)設(shè)二次函數(shù)f(x)=(k-4)x2+kx
           (k∈R)
          ,對任意實(shí)數(shù)x,有f(x)≤6x+2恒成立;數(shù)列{an}滿足an+1=f(an).
          (1)求函數(shù)f(x)的解析式和值域;
          (2)證明:當(dāng)an∈(0,
          1
          2
          )
          時(shí),數(shù)列{an}在該區(qū)間上是遞增數(shù)列;
          (3)已知a1=
          1
          3
          ,是否存在非零整數(shù)λ,使得對任意n∈N*,都有log3(
          1
          1
          2
          -a1
          )+log3(
          1
          1
          2
          -a2
          )+…+log3(
          1
          1
          2
          -an
          )>-
          1+(-1)n-12λ+nlog32恒成立,若存在,求之;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (本題滿分16分)已知二次函數(shù)f (x) = x2 ??ax + a (x∈R)同時(shí)滿足:①不等式 f (x) ≤ 0的解集有且只有一個(gè)元素;②在定義域內(nèi)存在0 < x1 < x2,使得不等式f (x1) > f (x2)成立.設(shè)數(shù)列{an}的前 n 項(xiàng)和Sn = f (n).(1)求函數(shù)f (x)的表達(dá)式;(2)求數(shù)列{an}的通項(xiàng)公式;(3)在各項(xiàng)均不為零的數(shù)列{cn}中,若ci·ci+1 < 0,則稱cici+1為這個(gè)數(shù)列{cn}一對變號項(xiàng).令cn = 1 ?? (n為正整數(shù)),求數(shù)列{cn}的變號項(xiàng)的對數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年北京市首師大附中高三(上)12月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

          已知二次函數(shù)f(x)=x2-ax+a(x∈R)同時(shí)滿足:①不等式f(x)≤0的解集有且只有一個(gè)元素;②在定義域內(nèi)存在0<x1<x2,使得不等式f(x1)>f(x2)成立.設(shè)數(shù)列{an}的前n項(xiàng)和Sn=f(n).
          (1)求函數(shù)f(x)的表達(dá)式;
          (2)求數(shù)列{an}的通項(xiàng)公式;
          (3)在各項(xiàng)均不為零的數(shù)列{cn}中,若ci•ci+1<0,則稱ci,ci+1為這個(gè)數(shù)列{cn}一對變號項(xiàng).令(n為正整數(shù)),求數(shù)列{cn}的變號項(xiàng)的對數(shù).

          查看答案和解析>>

          同步練習(xí)冊答案