日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖1,在△ABC中AB⊥AC、AD⊥BC,D是垂足,則AB2=BD•BC(射影定理).類似的有命題:在三棱錐A-BCD(圖2)中,AD⊥平面ABC,AO⊥平面BCD,O為垂足,且O在△BCD內(nèi),則(S△ABC2=S△BCO•S△BCD(S表示面積.上述命題( 。
          分析:通過連接DO,據(jù)BC⊥AO,BC⊥AD得到BC⊥面ADE,得到BC⊥ED得到滿足平面條件的三角形AED,利用平面三角形的性質(zhì)得證.
          解答:解:命題是一個真命題.
          在圖(2)中,連接DO,并延長交BC于E,連接AE,則有OE⊥BC.
          因為AO⊥面ABC,所以AO⊥AE.
          又AO⊥DE,所以AE2=EO•ED.
          于是S△ABC2=(
          1
          2
          BC•AE)2(
          1
          2
          BC•EO)•(
          1
          2
          BC•ED)
          =S△BCO•S△BCD
          故有S△ABC2=S△BCO•S△BCD.
          故選A
          點評:本題考查類比推理及利用平面的性質(zhì)證明空間的結(jié)論.考查空間想象能力,難度較大.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          如圖1,在△ABC中,AB=3,AC=5,且O是△ABC的外心,則
          AO
          BC
          的值是( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖1,在△ABC中,BC=3,AC=6,∠C=90°,且DE∥BC,將△ADE沿DE折起到△A1DE的位置,使A1D⊥CD,如圖2.
          精英家教網(wǎng)
          (Ⅰ)求證:BC⊥平面A1DC;
          (Ⅱ)若CD=2,求BE與平面A1BC所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖1-9,在△ABC中,∠BAC=90°,D是BC的中點,AE⊥AD交CB延長線于E,則結(jié)論正確的是(    )

          圖1-9

          A.△AED∽△ACB                         B.△AEB∽△ACD

          C.△BAE∽△ACE                         D.△AEC∽△DAC

          查看答案和解析>>

          科目:高中數(shù)學 來源:2015屆河南省分校高一上學期入學考試數(shù)學試卷(解析版) 題型:解答題

          如圖1,在△ABC中,點P為BC邊中點,直線a繞頂點A旋轉(zhuǎn),若點B,P在直線a的異側(cè),BM⊥直線a于點M.CN⊥直線a于點N,連接PM,PN.

          (1)延長MP交CN于點E(如圖2).

          ①求證:△BPM≌△CPE;

          ②求證:PM=PN;

          (2)若直線a繞點A旋轉(zhuǎn)到圖3的位置時,點B,P在直線a的同側(cè),其它條件不變,此時PM=PN還成立嗎?若成立,請給予證明;若不成立,請說明理由;

          (3)若直線a繞點A旋轉(zhuǎn)到與BC邊平行的位置時,其它條件不變,請直接判斷四邊形MBCN的形狀及此時PM=PN還成立嗎?不必說明理由.

           

          查看答案和解析>>

          同步練習冊答案