日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知fx)是定義在R上的奇函數(shù)且f-2=-3,當(dāng)x≥0時,fx=ax-1,其中a0a≠1.

          1)求的值;

          2)求函數(shù)fx)的解析式;

          3)已知gx=log2x,若對任意的x1[1,4],存在使得fmx1)+1≥gx2)(其中m≥0)成立,求實數(shù)m的取值范圍.

          【答案】(1)0;(2);(3

          【解析】

          (1)根據(jù)題意,由奇函數(shù)的性質(zhì)可得=0,即可得答案;

          (2)根據(jù)題意,由函數(shù)的奇偶性可得f(2)=3,結(jié)合函數(shù)的解析式可得f(2)=a2-1=3,解可得a=2,解可得當(dāng)x≥0時,f(x)=2x-1,當(dāng)x<0時,結(jié)合函數(shù)的奇偶性與解析式分析可得f(x)=-f(-x)=-2-x+1,綜合可得答案;

          (3)根據(jù)題意,由函數(shù)的解析式分析可得x1∈[1,4]時,f(mx1)的取值范圍和當(dāng)時,g(x2)的取值范圍,結(jié)合題意可得2m,解可得m的取值范圍,即可得答案.

          (1)根據(jù)題意,fx)為奇函數(shù),即有fx)+f(-x)=0,

          =0,

          (2)根據(jù)題意,fx)是定義在R上的奇函數(shù)且f(-2)=-3,則f(2)=3,

          又由當(dāng)x≥0時,fx)=ax-1,則f(2)=a2-1=3,解可得a=2,

          則當(dāng)x≥0時,fx)=2x-1,

          當(dāng)x<0時,-x>0,f(-x)=2-x-1,

          fx)=-f(-x)=-2-x+1,

          fx)=;

          (3)任意的x1∈[1,4],當(dāng)m>0,有mx1>0,則fmx1)+1=,

          則有2mfmx1)+1≤24m,

          當(dāng)時,則gx2)=log2x2,則有gm)≤1+log23,

          若對任意的x1∈[1,4],存在使得fmx1)+1≥gx2),

          則有2m,解可得m≥log23-1,

          m的取值范圍為[log23-1,+∞)

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),

          上的最大值為M,最小值為m

          ,求a的取值范圍;

          證明:

          上恒成立,求a的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)是偶函數(shù)的導(dǎo)函數(shù),在區(qū)間上的唯一零點為2,并且當(dāng),,則使得成立的的取值范圍是( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某工廠的A、B、C三個不同車間生產(chǎn)同一產(chǎn)品的數(shù)量(單位:件)如表所示.質(zhì)檢人員用分層抽樣的方法從這些產(chǎn)品中共抽取6件樣品進行檢測.

          車間

          A

          B

          C

          數(shù)量

          50

          150

          100

          (1)求這6件樣品中來自A、B、C各車間產(chǎn)品的數(shù)量;
          (2)若在這6件樣品中隨機抽取2件進行進一步檢測,求這2件商品來自相同車間的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)fx=xR).

          1)證明:當(dāng)a3時,fx)在R上是減函數(shù);

          2)若函數(shù)fx)存在兩個零點,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】記max{a,b}= ,設(shè)M=max{|x﹣y2+4|,|2y2﹣x+8|},若對一切實數(shù)x,y,M≥m2﹣2m都成立,則實數(shù)m的取值范圍是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (1)若為奇函數(shù),求的值;

          (2)試判斷內(nèi)的單調(diào)性,并用定義證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點,M是棱PC上的點,PA=PD=AD=2,BC=1,CD=
          (1)求證:平面PQB⊥平面PAD;
          (2)若PM=3MC,求二面角M﹣BQ﹣C的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】小李從網(wǎng)上購買了一件商品,快遞員計劃在下午5:00-6:00之間送貨上門,已知小李下班到家的時間為下午5:30-6:00.快遞員到小李家時,如果小李未到家,則快遞員會電話聯(lián)系小李.若小李能在10分鐘之內(nèi)到家,則快遞員等小李回來;否則,就將商品存放在快遞柜中.則小李需要去快遞柜收取商品的概率為( )

          A. B. C. D.

          查看答案和解析>>

          同步練習(xí)冊答案