日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在數(shù)列{an}中,an=1-
          1
          2
          +
          1
          3
          -
          1
          4
          +…+
          1
          2n-1
          -
          1
          2n
          ,則ak+1=( 。
          A、ak+
          1
          2k+1
          B、ak+
          1
          2k+2
          -
          1
          2k+4
          C、ak+
          1
          2k+2
          D、ak+
          1
          2k+1
          -
          1
          2k+2
          分析:由已知中an=1-
          1
          2
          +
          1
          3
          -
          1
          4
          +…+
          1
          2n-1
          -
          1
          2n
          ,我們依次給出a1,a2,…,an,ak的表達(dá)式,分析變化規(guī)律,即可得到ak+1的表達(dá)式.
          解答:解:∵an=1-
          1
          2
          +
          1
          3
          -
          1
          4
          +…+
          1
          2n-1
          -
          1
          2n
          ,
          ∴a1=1-
          1
          2

          a2=1-
          1
          2
          +
          1
          3
          -
          1
          4
          ,
          …,
          an=1-
          1
          2
          +
          1
          3
          -
          1
          4
          +…+
          1
          2n-1
          -
          1
          2n
          ,
          ak=1-
          1
          2
          +
          1
          3
          -
          1
          4
          +…+
          1
          2k-1
          -
          1
          2k
          ,
          所以,ak+1=ak+
          1
          2k+1
          -
          1
          2k+2

          故選:D.
          點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是數(shù)列的要領(lǐng)及表示方法,根據(jù)已知條件,列出數(shù)列的前n項(xiàng),分析項(xiàng)與項(xiàng)之間的關(guān)系是解答本題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在數(shù)列{an}中,
          a
           
          1
          =1
          an=
          1
          2
          an-1+1
          (n≥2),則數(shù)列{an}的通項(xiàng)公式為an=
          2-21-n
          2-21-n

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在數(shù)列{an}中,a 1=
          1
          3
          ,并且對(duì)任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
          1
          an
          (n∈N*).
          (Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
          (Ⅱ)設(shè)數(shù)列{
          an
          n
          }的前n項(xiàng)和為Tn,證明:
          1
          3
          Tn
          3
          4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在數(shù)列{an}中,a=
          12
          ,前n項(xiàng)和Sn=n2an,求an+1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在數(shù)列{an}中,a1=a,前n項(xiàng)和Sn構(gòu)成公比為q的等比數(shù)列,________________.

          (先在橫線上填上一個(gè)結(jié)論,然后再解答)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東省汕尾市陸豐市碣石中學(xué)高三(上)第四次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          在數(shù)列{an}中,a,并且對(duì)任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=(n∈N*).
          (Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
          (Ⅱ)設(shè)數(shù)列{}的前n項(xiàng)和為Tn,證明:

          查看答案和解析>>

          同步練習(xí)冊(cè)答案