已知函數(shù)

.
(1)寫出該函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)

恰有3個不同零點,求實數(shù)

的取值范圍;
(3)若

對所有

恒成立,求實數(shù)n的取值范圍。
(1)單調(diào)增區(qū)間

,

單調(diào)遞減區(qū)間是
(2)

(3)n的取值范圍是

試題分析:(1) 由函數(shù)

的圖象 函數(shù)

的單調(diào)遞減區(qū)間是
單調(diào)增區(qū)間是

,
(2)作出直線

,
函數(shù)

恰有3個不同零點等價于函數(shù)

與函數(shù)

的圖象恰有三個不同公共點。結(jié)合圖形
且函數(shù)

又 f(0)="1" f(1)=

∴
(3) 解:若要使f (x)≤n
2-2bn+1對所有x∈[-1,1]恒成立
則需 [f(x)]
max≤n
2-2bn+1 [f(x)]
max=f(0)=1
∴n
2-2bn+1≥1即n
2-2bn≥0在b∈[-1,1]恒成立
∴y= -2nb+n
2在b∈[-1,1]恒大于等于0
∴

,∴

∴n的取值范圍是
點評:本題考查了函數(shù)圖象的作法、函數(shù)的單調(diào)性及函數(shù)零點問題,本題的解決過程充分體現(xiàn)了數(shù)形結(jié)合
思想的作用.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)

為奇函數(shù),且在

處取得極大值2.
(Ⅰ)求

的解析式;
(Ⅱ)過點

(

可作函數(shù)

圖像的三條切線,求實數(shù)

的取值范圍;
(Ⅲ)若

對于任意的

恒成立,求實數(shù)

的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)f(x)=

.
(1)若f(x)=2,求x的值;
(2)判斷x>0時,f(x)的單調(diào)性;
(3)若

恒成立,求m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設函數(shù)

有兩個極值點

,且

.
(1)求實數(shù)

的取值范圍;
(2)討論函數(shù)

的單調(diào)性;
(3)若對任意的

,都有

成立,求實數(shù)

的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知


.
(1)

時,求

的極值;
(2)當

時,討論

的單調(diào)性;
(3)證明:

(

,

,其中無理數(shù)

)
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
函數(shù)

在

上是單調(diào)遞增函數(shù),則

的取值范圍是_____________。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
函數(shù)

的遞減區(qū)間是
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知函數(shù)

(

)滿足

,且

的導函數(shù)

<

,則

<

的解集為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(8分)已知函數(shù)

(

x∈R).
(1)若

,求

的值;
(2)若

,求

的值。
查看答案和解析>>