【題目】已知等差數(shù)列{an}中,a2=5,S5=40.等比數(shù)列{bn}中,b1=3,b4=81,
(1)求{an}和{bn}的通項公式
(2)令cn=anbn,求數(shù)列{cn}的前n項和Tn.
【答案】(1)an=3n﹣1;(2);(3)
【解析】試題分析:(1)設(shè)出數(shù)列的公差,分別根據(jù)等差數(shù)列的通項公式表示出 和
聯(lián)立方程求得和
和
,則數(shù)列的通項公式可得,求出首項與公比,即可得
的通項公式;(2)由(1)得的
代入
,利用錯位相減求和即可.
試題解析:(1)設(shè)公差為d,則由a2=5,S5=40,得:,解得
,則an=3n﹣1…
∵∴q=3
…
(2)①
∴②
①﹣②:
∴…
【 方法點睛】本題主要考查等比數(shù)列和等差數(shù)列的通項以及錯位相減法求數(shù)列的的前 項和,屬于中檔題.一般地,如果數(shù)列
是等差數(shù)列,
是等比數(shù)列,求數(shù)列
的前
項和時,可采用“錯位相減法”求和,一般是和式兩邊同乘以等比數(shù)列
的公比,然后作差求解, 在寫出“
”
與“
” 的表達(dá)式時應(yīng)特別注意將兩式“錯項對齊”以便下一步準(zhǔn)確寫出“
”的表達(dá)式.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中
.
(1)當(dāng)時,求曲線
在點
處的切線的斜率;
(2)當(dāng)時,求函數(shù)
的單調(diào)區(qū)間與極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的對稱軸為
,
.
(1)求函數(shù)的最小值及取得最小值時
的值;
(2)試確定的取值范圍,使
至少有一個實根;
(3)當(dāng)時,
,對任意
有
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面
是菱形,
,側(cè)面
是邊長為2的等邊三角形,點
是
的中點,且平面
平面
.
(I)求異面直線與
所成角的余弦值;
(II)若點在線段
上移動,是否存在點
使平面
與平面
所成的角為
?若存在,指出點
的位置,否則說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
,曲線
與
在原點處有公共切線.
(I)若為函數(shù)的極大值點,求
的單調(diào)區(qū)間(用
表示);
(II)若,
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)俄羅斯新羅西斯克2015年5月17日電 記者吳敏、鄭文達(dá)報道:當(dāng)?shù)貢r間17日,參加中俄“海上聯(lián)合-2015(Ⅰ)”軍事演習(xí)的9艘艦艇抵達(dá)地中海預(yù)定海域,混編組成海上聯(lián)合集群.接到命令后我軍在港口M要將一件重要物品用小艇送到一艘正在航行的俄軍輪船上,在小艇出發(fā)時,輪船位于港口M北偏西30°且與該港口相距20海里的A處,并正以30海里/小時的航行速度沿正東方向勻速行駛.假設(shè)該小艇沿直線方向以v海里/小時的航行速度勻速行駛,經(jīng)過t小時與輪船相遇.
(1)若希望相遇時小艇的航行距離最小,則小艇航行速度的大小應(yīng)為多少?
(2)為保證小艇在30分鐘內(nèi)(含30分鐘)能與輪船相遇,試確定小艇航行速度的最小值并說明你的推理過程;
(3)是否存在v,使得小艇以v海里/小時的航行速度行駛,總能有兩種不同的航行方向與輪船相遇?若存在,試確定v的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知隨機(jī)變量X~N(μ,σ2),且其正態(tài)曲線在(-∞,80)上是增函數(shù),在(80,+∞)上為減函數(shù),且P(72≤X≤88)=0.682 6.
(1)求參數(shù)μ,σ的值;
(2)求P(64<X≤72).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)實數(shù)
滿足不等式
函數(shù)
無極值點.
(1)若“”為假命題,“
”為真命題,求實數(shù)
的取值范圍;
(2)已知“”為真命題,并記為
,且
,若
是
的必要不充分條件,求正整數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面
為正方形,點
是棱
的中點,
,平面
平面
.
(Ⅰ)求證://平面
;
(Ⅱ)求證:平面
;
(Ⅲ) 設(shè),試判斷平面
⊥平面
能否成立;若成立,寫出
的一個值(只需寫出結(jié)論).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com