日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評分)
          (A)(極坐標(biāo)與參數(shù)方程)直線l:x-y+b=0與曲線
          x=1+
          2
          cosθ
          y=-2+
          2
          sinθ
          是參數(shù))相切,則b=
          -1或-5
          -1或-5

          (B)設(shè)6≤|x-a|+|x-b|對任意的x∈R恒成立.則a與b滿足的關(guān)系是
          |a-b|≥6
          |a-b|≥6

          (C)如圖所示,圓O的直徑為6,C為圓周上一點.BC=3,過C作圓的切線l.過A作l的垂線AD,垂足為D,則線段CD的長為
          3
          3
          2
          3
          3
          2
          分析:(A)把曲線
          x=1+
          2
          cosθ
          y=-2+
          2
          sinθ
          是參數(shù))的參數(shù)方程化為普通方程可得表示一個圓,再由直線l:x-y+b=0與曲線相切可得圓心到直線的距離等于半徑,由此求得b的值.
          (B)由于|x-a|+|x-b|表示數(shù)軸上的x對應(yīng)點到a、b對應(yīng)點的距離之和,其最小值為|a-b|,可得|a-b|≥6.
          (C)由切線性質(zhì)可知OC垂直于直線l,得出OC平行于AD,根據(jù)AB為圓的直徑,得到三角形ABC為直角三角形,再根據(jù)BC和AB的長度,利用勾股定理求出AC的長,且利用在直角三角形的性質(zhì)推出∠CAD等于30°,從而求得求出CD.
          解答:解:(A)把曲線
          x=1+
          2
          cosθ
          y=-2+
          2
          sinθ
          是參數(shù))的參數(shù)方程化為普通方程為 (x-1)2+(y+2)2=2,表示以A(1,-2)為圓心,半徑等于
          2
          的圓.
          由直線l:x-y+b=0與曲線相切可得
          2
          =
          |1+2+b|
          2
          ,解得 b=-1 或 b=-5,
          故答案為-1或-5.
          (B)由于|x-a|+|x-b|表示數(shù)軸上的x對應(yīng)點到a、b對應(yīng)點的距離之和,其最小值為|a-b|,故由6≤|x-a|+|x-b|對任意的x∈R恒成立,
          可得|a-b|≥6,
          故答案為|a-b|≥6.
          (C)連接OC,則OC⊥直線l,所以O(shè)C∥AD.∵AB為圓的直徑,∴∠ACB=90°.
          又AB=6,BC=3,所以∠CAB=30°,AC=
          62-2
          =3
          3
          ,由OA=OC得,∠ACO=∠CAB=30°.
          ∵OC∥AD,∴∠CAD=∠ACO=30°,∴CD=
          1
          2
          AC
          =
          1
          2
          •3
          3
          =
          3
          3
          2

          故答案為
          3
          3
          2
          點評:本題主要考查把參數(shù)方程化為普通方程的方法,點到直線的距離公式的應(yīng)用,直線和圓的位置關(guān)系.絕對值的意義,絕對值不等式的解法.學(xué)生靈活運用圓的切線垂直于過切點的直徑,掌握圓中的一些基本性質(zhì),靈活運用直角三角形的邊角關(guān)系化簡求值,是一道綜合題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評分)
          A.(不等式選做題)不等式|x+1|≥|x+2|的解集為
           

          B.(幾何證明選做題)如圖所示,過⊙O外一點P作一條直線與⊙O交于A,B兩點,
          已知PA=2,點P到⊙O的切線長PT=4,則弦AB的長為
           

          C.(坐標(biāo)系與參數(shù)方程選做題)若直線3x+4y+m=0與圓
          x=1+cosθ
          y=-2+sinθ
          (θ為參數(shù))沒有公共點,則實數(shù)m的取值范圍是
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (三選一,考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評分)
          (1)(坐標(biāo)系與參數(shù)方程選做題)在直角坐標(biāo)系中圓C的參數(shù)方程為
          x=1+2cosθ
          y=
          3
          +2sinθ
          (θ為參數(shù)),則圓C的普通方程為
          (x-1)2+(y-
          3
          )2=4
          (x-1)2+(y-
          3
          )2=4

          (2)(不等式選講選做題)設(shè)函數(shù)f(x)=|2x+1|-|x-4|,則不等式f(x)>2的解集為
          {x|x<-7或x>
          5
          3
          }
          {x|x<-7或x>
          5
          3
          }

          (3)(幾何證明選講選做題) 如圖所示,等腰三角形ABC的底邊AC長為6,其外接圓的半徑長為5,則三角形ABC的面積是
          3
          3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評閱記分)
          (A)(幾何證明選做題)如圖,CD是圓O的切線,切點為C,點B在圓O上,BC=2,∠BCD=30°,則圓O的面積為
          ;
          (B)(極坐標(biāo)系與參數(shù)方程選做題)極坐標(biāo)方程ρ=2sinθ+4cosθ表示的曲線截θ=
          π
          4
          (ρ∈R)
          所得的弦長為
          3
          2
          3
          2
          ;
          (C)(不等式選做題)  不等式|2x-1|<|x|+1解集是
          (0,2)
          (0,2)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評閱記分)
          A.如圖,△ABC是⊙O的內(nèi)接三角形,PA是⊙O的切線,PB交AC于點E,交⊙O于點D.若PA=PE,∠ABC=60°,PD=1,PB=9,則EC=
          4
          4

          B. P為曲線C1
          x=1+cosθ
          y=sinθ
          ,(θ為參數(shù))上一點,則它到直線C2
          x=1+2t
          y=2
          (t為參數(shù))距離的最小值為
          1
          1

          C.不等式|x2-3x-4|>x+1的解集為
          {x|x>5或x<-1或-1<x<3}
          {x|x>5或x<-1或-1<x<3}

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (考生注意:請在下列二題中任選一題作答,如果多做,則按所做的第一題評閱記分.)
          (A)(選修4-4坐標(biāo)系與參數(shù)方程)曲線
          x=cosα
          y=a+sinα
          (α為參數(shù))與曲線ρ2-2ρcosθ=0的交點個數(shù)為
           
          個.
          (B)(選修4-5不等式選講)若不等式|x+1|+|x-3| ≥a+
          4
          a
          對任意的實數(shù)x恒成立,則實數(shù)a的取值范圍是
           

          查看答案和解析>>

          同步練習(xí)冊答案