日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知圓C:x2+y2+2x-4y+3=0.
          (1)若不過原點(diǎn)的直線l與圓C相切,且在x軸,y軸上的截距相等,求直線l的方程;
          (2)從圓C外一點(diǎn)P(x,y)向圓引一條切線,切點(diǎn)為M,O為坐標(biāo)原點(diǎn),且有|PM|=|PO|,求點(diǎn)P的軌跡方程.

          解:(1)將圓C配方得(x+1)2+(y-2)2=2.
          由題意知直線在兩坐標(biāo)軸上的截距不為零,設(shè)直線方程為x+y-a=0,
          =,得|a-1|=2,即a=-1,或a=3.
          ∴直線方程為x+y+1=0,或x+y-3=0;…(6分)
          (2)由于|PC|2=|PM|2+|CM|2=|PM|2+r2,
          ∴|PM|2=|PC|2-r2
          又∵|PM|=|PO|,
          ∴|PC|2-r2=|PO|2,
          ∴(x+1)2+(y-2)2-2=x2+y2
          ∴2x-4y+3=0即為所求.…(12分)
          分析:(1)把圓的方程化為標(biāo)準(zhǔn)方程,找出圓心坐標(biāo)和半徑,由直線l不過原點(diǎn),得到該直線在坐標(biāo)軸上的截距不為0,設(shè)出直線l的截距式方程,利用點(diǎn)到直線的距離公式表示出圓心到直線的距離d,讓d等于圓的半徑列出關(guān)于a的方程,求出方程的解可得到a的值,確定出直線l的方程;
          (2)由切線的性質(zhì),得到三角形PCM為直角三角形,利用勾股定理得到|PC|2=|PM|2+r2,表示出|PM|2,由|PM|=|PO|,進(jìn)而得到|PO|2,由設(shè)出的P的坐標(biāo)和原點(diǎn)坐標(biāo),利用兩點(diǎn)間的距離公式表示出|PO|,可得出|PO|2,兩者相等,化簡(jiǎn)可得點(diǎn)P的軌跡方程.
          點(diǎn)評(píng):此題考查了圓的切線方程,以及動(dòng)點(diǎn)的軌跡方程,涉及的知識(shí)有:圓的標(biāo)準(zhǔn)方程,點(diǎn)到直線的距離公式,直線的截距式方程,切線的性質(zhì),勾股定理以及兩點(diǎn)間的距離公式,當(dāng)直線與圓相切時(shí),圓心到直線的距離等于圓的半徑,常常利用切線長(zhǎng),圓的半徑及圓心到圓外點(diǎn)的距離構(gòu)造直角三角形來解決問題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知圓C:x2+y2-6x-4y+8=0.以圓C與坐標(biāo)軸的交點(diǎn)分別作為雙曲線的一個(gè)焦點(diǎn)和頂點(diǎn),則適合上述條件雙曲線的標(biāo)準(zhǔn)方程為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (1)一個(gè)圓與x軸相切,圓心在直線3x-y=0上,且被直線x-y=0所截得的弦長(zhǎng)為2
          7
          ,求此圓方程.
          (2)已知圓C:x2+y2=9,直線l:x-2y=0,求與圓C相切,且與直線l垂直的直線方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•普陀區(qū)一模)如圖,已知圓C:x2+y2=r2與x軸負(fù)半軸的交點(diǎn)為A.由點(diǎn)A出發(fā)的射線l的斜率為k,且k為有理數(shù).射線l與圓C相交于另一點(diǎn)B.
          (1)當(dāng)r=1時(shí),試用k表示點(diǎn)B的坐標(biāo);
          (2)當(dāng)r=1時(shí),試證明:點(diǎn)B一定是單位圓C上的有理點(diǎn);(說明:坐標(biāo)平面上,橫、縱坐標(biāo)都為有理數(shù)的點(diǎn)為有理點(diǎn).我們知道,一個(gè)有理數(shù)可以表示為
          qp
          ,其中p、q均為整數(shù)且p、q互質(zhì))
          (3)定義:實(shí)半軸長(zhǎng)a、虛半軸長(zhǎng)b和半焦距c都是正整數(shù)的雙曲線為“整勾股雙曲線”.
          當(dāng)0<k<1時(shí),是否能構(gòu)造“整勾股雙曲線”,它的實(shí)半軸長(zhǎng)、虛半軸長(zhǎng)和半焦距的長(zhǎng)恰可由點(diǎn)B的橫坐標(biāo)、縱坐標(biāo)和半徑r的數(shù)值構(gòu)成?若能,請(qǐng)嘗試探索其構(gòu)造方法;若不能,試簡(jiǎn)述你的理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•瀘州一模)已知圓C:x2+y2=r2(r>0)與拋物線y2=40x的準(zhǔn)線相切,若直線l:
          x
          a
          y
          b
          =1
          與圓C有公共點(diǎn),且公共點(diǎn)都為整點(diǎn)(整點(diǎn)是指橫坐標(biāo).縱坐標(biāo)都是整數(shù)的點(diǎn)),那么直線l共有( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知圓C:x2+y2=4與直線L:x+y+a=0相切,則a=( 。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案