日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0).
          定義:(1)設(shè)f″(x)是函數(shù)y=f(x)的導(dǎo)數(shù)y=f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的“拐點”;
          定義:(2)設(shè)x0為常數(shù),若定義在R上的函數(shù)y=f(x)對于定義域內(nèi)的一切實數(shù)x,都有f(x0+x)+f(x0-x)=2f(x0)成立,則函數(shù)y=f(x)的圖象關(guān)于點(x0,f(x0))對稱.
          己知f(x)=x3-3x2+2x+2,請回答下列問題:
          (1)求函數(shù)f(x)的“拐點”A的坐標(biāo)
           
          ;
          (2)檢驗函數(shù)f(x)的圖象是否關(guān)于“拐點”A對稱,對于任意的三次函數(shù)寫出一個有關(guān)“拐點”的結(jié)論
           
          分析:(1)先求f′(x)得解析式,再求f″(x),由f″(x)=0 求得拐點的橫坐標(biāo),代入函數(shù)解析式求拐點的縱坐標(biāo).
          (2)因為f(1+x)+f(1-x)=2f(1),由定義(2)知:f(x)=x3-3x2+2x+2關(guān)于點(1,2)對稱,進(jìn)行合情推理,可得結(jié)論:三次函數(shù)f(x)=ax3+bx2+cx+d (a≠0)的“拐點”是(
          -b
          3a
          ,f(-
          b
          3a
          )),它就是f(x)的對稱中心.
          解答:解:(1)依題意,得:f′(x)=3x2-6x+2,∴f″(x)=6x-6.
          由f″(x)=0,即 6x-6=0.∴x=1,又 f(1)=2,
          ∴f(x)=x3-3x2+2x+2的“拐點”坐標(biāo)是(1,2).
          故答案為:(1,2)
          (2)由(1)知“拐點”坐標(biāo)是(1,2).
          而f(1+x)+f(1-x)=(1+x)3-3(1+x)2+2(1+x)+2+(1-x)3-3(1-x)2+2(1-x)+2
          =2+6x2-6-6x2+4+4=4=2f(1),
          由定義(2)知:f(x)=x3-3x2+2x+2關(guān)于點(1,2)對稱.
          一般地,三次函數(shù)f(x)=ax3+bx2+cx+d (a≠0)的“拐點”是(
          -b
          3a
          ,f(-
          b
          3a
          )),它就是f(x)的對稱中心.
          (或者:任何一個三次函數(shù)都有拐點;任何一個三次函數(shù)都有對稱中心;任何一個三次函數(shù)平移后可以是奇函數(shù);都對.)
          故答案為:任何一個三次函數(shù)都有拐點
          點評:本題考查一階導(dǎo)數(shù)、二階導(dǎo)數(shù)的求法,函數(shù)的拐點的定義以及函數(shù)圖象關(guān)于某點對稱的條件.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•昌平區(qū)二模)對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f″(x)是函數(shù)f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實數(shù)解x0,則稱(x0,f(x0))為函數(shù)y=f(x)的“拐點”.某同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個三次函數(shù)都有“拐點”;任何一個三次函數(shù)都有對稱中心,且“拐點”就是對稱中心.給定函數(shù)f(x)=
          1
          3
          x3-
          1
          2
          x2+3x-
          5
          12
          ,請你根據(jù)上面探究結(jié)果,解答以下問題
          (1)函數(shù)f(x)=
          1
          3
          x3-
          1
          2
          x2+3x-
          5
          12
          的對稱中心為
          1
          2
          ,1)
          1
          2
          ,1)
          ;
          (2)計算f(
          1
          2013
          )+f(
          2
          2013
          )+f(
          3
          2013
          )
          +…+f(
          2012
          2013
          )=
          2012
          2012

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•房山區(qū)二模)對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f″(x)是f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的“拐點”.某同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個三次函數(shù)都有“拐點”;任何一個三次函數(shù)都有對稱中心,且拐點就是對稱中心.若f(x)=
          1
          3
          x3-
          1
          2
          x2+
          1
          6
          x+1
          ,則該函數(shù)的對稱中心為
          (
          1
          2
          ,1)
          (
          1
          2
          ,1)
          ,計算f(
          1
          2013
          )+f(
          2
          2013
          )+f(
          3
          2013
          )+…+f(
          2012
          2013
          )
          =
          2012
          2012

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:設(shè)f''(x)是函數(shù)y=f(x)的導(dǎo)數(shù)f′(x)的導(dǎo)數(shù),若方程f''(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的“拐點”.有同學(xué)發(fā)現(xiàn)“任何一個三次函數(shù)都有‘拐點’;任何一個三次函數(shù)都有對稱中心”,且‘拐點’就是對稱中心.請你將這一發(fā)現(xiàn)作為條件.
          (1).函數(shù)f(x)=x3-3x2+3x的對稱中心為
          (1,2)
          (1,2)

          (2).若函數(shù)g(x)=
          1
          3
          x3-
          1
          2
          x2+3x-
          5
          12
          +
          1
          x-
          1
          2
          ,則g(
          1
          2013
          )+g(
          2
          2013
          )+g(
          3
          2013
          )+…+g(
          2012
          2013
          )
          =
          2012
          2012

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•安慶三模)對于三次函數(shù)f(x)-ax3+bx2+cx+d(a≠0),給出定義:設(shè)ft(x)是函數(shù)y=f(x)的導(dǎo)數(shù),ftt(x)是函數(shù)ft的導(dǎo)數(shù),若方程ftt(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的“拐點”.某同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個一元三次函數(shù)都有“拐點”;且該“拐點”也為該函數(shù)的對稱中心.若f(x)=x3-
          3
          2
          x2+
          1
          2
          x+1,則f(
          1
          2014
          )+f(
          2
          2014
          )+…+f(
          2013
          2014
          )=( 。

          查看答案和解析>>

          同步練習(xí)冊答案