日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)
          (1)若函數(shù)f(x)在定義域內(nèi)單調(diào)遞增,求a的取值范圍;
          (2)若且關(guān)于x的方程在[1,4]上恰有兩個不相等的實(shí)數(shù)根,求實(shí)數(shù)b的取值范圍;
          (3)設(shè)各項(xiàng)為正的數(shù)列{an}滿足:a1=1,an+1=lnan+an+2,n∈N*用數(shù)學(xué)歸納法證明:an≤2n-1
          【答案】分析:(1)對函數(shù)f(x)進(jìn)行求導(dǎo),令導(dǎo)數(shù)大于等于0在x>0上恒成立即可.
          (2)將a的值代入整理成方程的形式,然后轉(zhuǎn)化為函數(shù)考慮其圖象與x軸的交點(diǎn)的問題.
          (3)設(shè)h(x)=lnx-x+1然后求導(dǎo),可判斷函數(shù)h(x)的單調(diào)性,再由數(shù)學(xué)歸納法得證.
          解答:解:(I)f'(x)=-(x>0)
          依題意f'(x)≥0在x>0時(shí)恒成立,即ax2+2x-1≤0在x>0恒成立.
          則a≤=在x>0恒成立,
          即a≤(x>0)
          當(dāng)x=1時(shí),取最小值-1
          ∴a的取值范圍是(-∞,-1].

          (II)a=-,f(x)=-x+b∴
          設(shè)g(x)=則g'(x)=列表:

          ∴g(x)極小值=g(2)=ln2-b-2,g(x)極大值=g(1)=-b-,
          又g(4)=2ln2-b-2
          ∵方程g(x)=0在[1,4]上恰有兩個不相等的實(shí)數(shù)根.
          ,得ln2-2<b≤-

          (III)設(shè)h(x)=lnx-x+1,x∈[1,+∞),則h'(x)=
          ∴h(x)在[1,+∞)為減函數(shù),且h(x)max=h(1)=0,故當(dāng)x≥1時(shí)有l(wèi)nx≤x-1.
          ∵a1=1
          假設(shè)ak≥1(k∈N*),則ak+1=lnak+ak+2>1,故an≥1(n∈N*
          從而an+1=lnan+an+2≤2an+1∴1+an+1≤2(1+an)≤…≤2n(1+a1
          即1+an≤2n,∴an≤2n-1
          點(diǎn)評:本題主要考查函數(shù)單調(diào)性與其導(dǎo)函數(shù)正負(fù)之間的關(guān)系,即當(dāng)導(dǎo)函數(shù)大于0時(shí)原函數(shù)單調(diào)遞增,當(dāng)導(dǎo)函數(shù)小于0時(shí)原函數(shù)單調(diào)遞減.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=x2+(a+1)x+lg|a+2|,g(x)=(a+1)x,(a∈R,a≠-2).
          (1)若函數(shù)f(x)和g(x)在區(qū)間[lg|a+2|,(a+1)2]上都是減函數(shù),求實(shí)數(shù)a的取值范圍;
          (2)在(1)的條件下,比較f(1)與
          16
          的大小,寫出理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=log3(ax+b)圖象過點(diǎn)A(2,1)和B(5,2),設(shè)an=3f(n),n∈N*
          (Ⅰ)求函數(shù)f(x)的解析式及數(shù)列{an}的通項(xiàng)公式;
          (Ⅱ)求使不等式(1+
          1
          a1
          )(1+
          1
          a2
          )…(1+
          1
          an
          )≥a
          2n+1
          對一切n∈N*均成立的最大實(shí)數(shù)a;
          (Ⅲ)對每一個k∈N*,在ak與ak+1之間插入2k-1個2,得到新數(shù)列:a1,2,a2,2,2,a3,2,2,2,2,a4,…,記為{bn},設(shè)Tn是數(shù)列{bn}的前n項(xiàng)和,試問是否存在正整數(shù)m,使Tm=2008?若存在,求出m的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)的圖象在[a,b]上連續(xù)不斷曲線,定義:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(t)|t∈D}表示函數(shù)f(t)在D上的最小值,max{f(t)|x∈D}表示函數(shù)f(t)在D上的最大值.若存在最小正整數(shù)k,使得f2(x)-f1(x)≤k(x-a)對任意的x∈[a,b]成立,則稱函數(shù)f(x)為[a,b]上的“k階收縮函數(shù)”.
          (1)已知函數(shù)f(x)=2sinx(0≤x≤
          n
          2
          ),試寫出f1(x),f2(x)的表達(dá)式,并判斷f(x)是否為[0,
          n
          2
          ]上的“k階收縮函數(shù)”,如果是,請求對應(yīng)的k的值;如果不是,請說明理由;
          (2)已知b>0,函數(shù)g(x)=-x3+3x2是[0,b]上的2階收縮函數(shù),求b的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如果是函數(shù)的一個極值,稱點(diǎn)是函數(shù)的一個極值點(diǎn).已知函數(shù)

          (1)若函數(shù)總存在有兩個極值點(diǎn),求所滿足的關(guān)系;

          (2)若函數(shù)有兩個極值點(diǎn),且存在,求在不等式表示的區(qū)域內(nèi)時(shí)實(shí)數(shù)的范圍.

          (3)若函數(shù)恰有一個極值點(diǎn),且存在,使在不等式表示的區(qū)域內(nèi),證明:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三12月月考數(shù)學(xué)理卷 題型:解答題

          (本小題滿分14分)已知函數(shù) 

          (1)若函數(shù)在區(qū)間其中a >0,上存在極值,求實(shí)數(shù)a的取值范圍;

          (2)如果當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)k的取值范圍;

          (3)求證.

           

          查看答案和解析>>

          同步練習(xí)冊答案