日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=ax3+bx2-3x(a,b∈R)在點(diǎn)(1,f(1))處的切線方程為y+2=0.
          (1)求函數(shù)f(x)的解析式;
          (2)若對(duì)于區(qū)間[-2,2]上任意兩個(gè)自變量的值x1,x2都有|f(x1)-f(x2)|≤c,求實(shí)數(shù)c的最小值;
          (3)若過(guò)點(diǎn)M(2,m)(m≠2)可作曲線y=f(x)的三條切線,求實(shí)數(shù)m的取值范圍.
          分析:(1)由題意,利用導(dǎo)函數(shù)的幾何含義及切點(diǎn)的實(shí)質(zhì)建立a,b的方程,然后求解即可;
          (2)由題意,對(duì)于定義域內(nèi)任意自變量都使得|f(x1)-f(x2)|≤c,可以轉(zhuǎn)化為求函數(shù)在定義域下的最值即可得解;
          (3)由題意,若過(guò)點(diǎn)M(2,m)(m≠2)可作曲線y=f(x)的三條切線,等價(jià)與函數(shù)在切點(diǎn)處導(dǎo)函數(shù)值等于切線的斜率這一方程有3解.
          解答:解:(1)f'(x)=3ax2+2bx-3.(2分)
          根據(jù)題意,得
          f(1)=-2
          f′(1)=0
          a+b-3=-2
          3a+2b-3=0
          解得
          a=1
          b=0

          所以f(x)=x3-3x.
          (2)令f'(x)=0,即3x2-3=0.得x=±1.
          當(dāng)x∈(-∞,-1)時(shí),f(x)>0,函數(shù)f(x)在此區(qū)間單調(diào)遞增;
          當(dāng)x∈(-1,1)時(shí),f(x)<0,函數(shù)f(x)在此區(qū)間單調(diào)遞減
          因?yàn)閒(-1)=2,f(1)=-2,
          所以當(dāng)x∈[-2,2]時(shí),f(x)max=2,f(x)min=-2.
          則對(duì)于區(qū)間[-2,2]上任意兩個(gè)自變量的值x1,x2,都有|f(x1)-f(x2)|≤|f(x)max-f(x)min|=4,所以c≥4.
          所以c的最小值為4.
          (3)因?yàn)辄c(diǎn)M(2,m)(m≠2)不在曲線y=f(x)上,所以可設(shè)切點(diǎn)為(x0,y0).
          則y0=x03-3x0
          因?yàn)閒'(x0)=3x02-3,所以切線的斜率為3x02-3.
          則3x02-3=
          x
          3
          0
          -3x0-m
          x0-2

          即2x03-6x02+6+m=0.
          因?yàn)檫^(guò)點(diǎn)M(2,m)(m≠2)可作曲線y=f(x)的三條切線,
          所以方程2x03-6x02+6+m=0有三個(gè)不同的實(shí)數(shù)解.
          所以函數(shù)g(x)=2x3-6x2+6+m有三個(gè)不同的零點(diǎn).
          則g'(x)=6x2-12x.令g'(x)=0,則x=0或x=2.
          當(dāng)x∈(-∞,0)時(shí),g(x)>0,函數(shù)g(x)在此區(qū)間單調(diào)遞增;當(dāng)x∈(0,2)時(shí),g(x)<0,函數(shù)g(x)在此區(qū)間單調(diào)遞減;
          所以,函數(shù)g(x)在x=0處取極大值,在x=2處取極小值,有方程與函數(shù)的關(guān)系知要滿足題意必須滿足:
          g(0)>0
          g(2)<0
          ,即
          6+m>0
          -2+m<0
          ,解得-6<m<2.
          點(diǎn)評(píng):(1)此題重點(diǎn)考查了導(dǎo)數(shù)的幾何含義及函數(shù)切點(diǎn)的定義,還考查了數(shù)學(xué)中重要的方程的思想;
          (2)此題重點(diǎn)考查了數(shù)學(xué)中等價(jià)轉(zhuǎn)化的思想把題意最總轉(zhuǎn)化為求函數(shù)在定義域下的最值;
          (3)此題重點(diǎn)考查了數(shù)學(xué)中導(dǎo)數(shù)的幾何含義,還考查了函數(shù)解的個(gè)數(shù)與相應(yīng)方程的解的個(gè)數(shù)的關(guān)系.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=
          a-x2
          x
          +lnx  (a∈R , x∈[
          1
          2
           , 2])

          (1)當(dāng)a∈[-2,
          1
          4
          )
          時(shí),求f(x)的最大值;
          (2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過(guò)原點(diǎn),則不等式f(x)>
          34
          的解集為
          (-∞,-2)
          (-∞,-2)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=a|x|的圖象經(jīng)過(guò)點(diǎn)(1,3),解不等式f(
          2x
          )>3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
          (1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
          (2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
          f(x)   ,  x>0
          -f(x) ,    x<0
           給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號(hào)是
           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案