日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)點(diǎn)P是曲線C:x2=2py(p>0)上的動(dòng)點(diǎn),點(diǎn)P到點(diǎn)(0,1)的距離和它到焦點(diǎn)F的距離之和的最小值為數(shù)學(xué)公式
          (1)求曲線C的方程;
          (2)若點(diǎn)P的橫坐標(biāo)為1,過P作斜率為k(k≠0)的直線交C于點(diǎn)Q,交x軸于點(diǎn)M,過點(diǎn)Q且與PQ垂直的直線與C交于另一點(diǎn)N,問是否存在實(shí)數(shù)k,使得直線MN與曲線C相切?若存在,求出k的值;若不存在,請(qǐng)說明理由.

          解:(1)依題意,點(diǎn)P到點(diǎn)(0,1)的距離和它到焦點(diǎn)F的距離之和的最小值為
          ∴1+=,解得p=
          所以曲線C的方程為x2=y.…(4分)
          (2)由題意直線PQ的方程為:y=k(x-1)+1,則點(diǎn)M(1-,0)
          聯(lián)立方程組,消去y得x2-kx+k-1=0
          解得Q(k-1,(k-1)2).…(6分)
          所以得直線QN的方程為y-(k-1)2)=
          代入曲線x2=y,得
          解得N(,).…(8分)
          所以直線MN的斜率kMN==-.…(10分)
          ∵過點(diǎn)N的切線的斜率
          ∴由題意有-=
          ∴解得
          故存在實(shí)數(shù)使命題成立. …(12分)
          分析:(1)根據(jù)點(diǎn)P到點(diǎn)(0,1)的距離和它到焦點(diǎn)F的距離之和的最小值為,可求p的值,從而可得曲線C的方程;
          (2)直線PQ的方程與拋物線方程聯(lián)立,確定Q的坐標(biāo),進(jìn)一步可得N的坐標(biāo),從而可得直線MN的斜率,利用導(dǎo)數(shù)求斜率,根據(jù)切線相等,即可求得k的值.
          點(diǎn)評(píng):本題考查軌跡方程,考查直線與曲線的位置關(guān)系,考查直線斜率的求解,正確求斜率是關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)點(diǎn)P是曲線C:x2=2py(p>0)上的動(dòng)點(diǎn),點(diǎn)P到點(diǎn)(0,1)的距離和它到焦點(diǎn)F的距離之和的最小值為
          54

          (1)求曲線C的方程;
          (2)若點(diǎn)P的橫坐標(biāo)為1,過P作斜率為k(k≠0)的直線交C于點(diǎn)Q,交x軸于點(diǎn)M,過點(diǎn)Q且與PQ垂直的直線與C交于另一點(diǎn)N,問是否存在實(shí)數(shù)k,使得直線MN與曲線C相切?若存在,求出k的值;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          設(shè)點(diǎn)P是曲線C:x2=2py(p>0)上的動(dòng)點(diǎn),點(diǎn)P到點(diǎn)(0,1)的距離和它到焦點(diǎn)F的距離之和的最小值為
          5
          4

          (1)求曲線C的方程;
          (2)若點(diǎn)P的橫坐標(biāo)為1,過P作斜率為k(k≠0)的直線交C于點(diǎn)Q,交x軸于點(diǎn)M,過點(diǎn)Q且與PQ垂直的直線與C交于另一點(diǎn)N,問是否存在實(shí)數(shù)k,使得直線MN與曲線C相切?若存在,求出k的值;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2013年高考數(shù)學(xué)壓軸大題訓(xùn)練:解析幾何中的最值問題(解析版) 題型:解答題

          設(shè)點(diǎn)P是曲線C:x2=2py(p>0)上的動(dòng)點(diǎn),點(diǎn)P到點(diǎn)(0,1)的距離和它到焦點(diǎn)F的距離之和的最小值為
          (1)求曲線C的方程;
          (2)若點(diǎn)P的橫坐標(biāo)為1,過P作斜率為k(k≠0)的直線交C于點(diǎn)Q,交x軸于點(diǎn)M,過點(diǎn)Q且與PQ垂直的直線與C交于另一點(diǎn)N,問是否存在實(shí)數(shù)k,使得直線MN與曲線C相切?若存在,求出k的值;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012年東北三省三校高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

          設(shè)點(diǎn)P是曲線C:x2=2py(p>0)上的動(dòng)點(diǎn),點(diǎn)P到點(diǎn)(0,1)的距離和它到焦點(diǎn)F的距離之和的最小值為
          (1)求曲線C的方程;
          (2)若點(diǎn)P的橫坐標(biāo)為1,過P作斜率為k(k≠0)的直線交C于點(diǎn)Q,交x軸于點(diǎn)M,過點(diǎn)Q且與PQ垂直的直線與C交于另一點(diǎn)N,問是否存在實(shí)數(shù)k,使得直線MN與曲線C相切?若存在,求出k的值;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案