日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函致f (x)=x3+bx2+cx+d.
          (I)當b=0時,證明:曲線y=f(x)與其在點(0,f(0))處的切線只有一個公共點;
          (Ⅱ)若曲線y=f(x)在點(1,f(1))處的切線為12x+y-13=0,且它們只有一個公共點,求函數(shù)y=f(x)的所有極值之和.
          分析:(Ⅰ)當b=0時,f(x)=x3+cx+d,f′(x)=3x2+c.f(0)=d,f′(0)=c.曲線y=f(x)與其在點(0,f(0))處的切線為y=cx+d.由此能夠證明曲線y=f(x)與其在點(0,f(0))處的切線只有一個公共點.
          (Ⅱ)由已知,切點為(1,1).又f′(x)=3x2+2bx+c,于是
          f(1)=1
          f′(1)=-12
          ,由此能夠求出函數(shù)y=f(x)的所有極值之和.
          解答:(Ⅰ)證明:當b=0時,f(x)=x3+cx+d,
          f′(x)=3x2+c.
          f(0)=d,f′(0)=c.…(2分)
          曲線y=f(x)與其在點(0,f(0))處的切線為y=cx+d.
          y=x3+cx+d
          y=cx+d
          ,消去y,得x3=0,x=0.
          所以曲線y=f(x)與其在點(0,f(0))處的切線只有一個公共點即切點.…(5分)
          (Ⅱ)解:由已知,切點為(1,1).
          又f′(x)=3x2+2bx+c,于是
          f(1)=1
          f′(1)=-12
          ,
          1+b+c+d=1
          3+2b+c=-12
          ,
          解得c=-2b-15,d=b+15.
          從而f(x)=x3+bx2-(2b+15)x+b+15.…(8分)
          y=x3+bx2-(2b+15)x+b+15
          12x+y-13=0

          消去y,得x3+bx2-(2b+3)x+b+2=0.
          因直線12x+y-13=0與曲線y=f(x)只有一個公共點(1,1),
          則方程x3+bx2-(2b+3)x+b+2
          =(x-1)[x2+(b+1)x-b-2]
          =(x-1)(x-1)(x+b+2)
          故b=-3.…(10分)
          于是f(x)=x3-3x2-9x+12,
          f′(x)=3x2-6x-9=3(x+1)(x-3).
          當x變化時,f′(x),f(x)的變化如下:
          x (-∞,-1) -1 (-1,3) 3 (3,+∞)
          f′(x) + 0 - 0 +
          f(x) 極大值17 極小值-15
          由此知,函數(shù)y=f(x)的所有極值之和為17-15=2.…(12分)
          點評:本題考查曲線與其切線只有一個公共點的證明,考查函數(shù)所有的極值之和的求法.解題時要認真審題,仔細解答,注意導數(shù)性質(zhì)的靈活運用.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          已知函致f (x)=x3+bx2+cx+d.
          (I)當b=0時,證明:曲線y=f(x)與其在點(0,f(0))處的切線只有一個公共點;
          (Ⅱ)若曲線y=f(x)在點(1,f(1))處的切線為12x+y-13=0,記函數(shù)y=f(x)的兩個極值點為x1,x2,當x1+x2=2時,求f(x1)+f(x2).

          查看答案和解析>>

          科目:高中數(shù)學 來源:2012-2013學年河北省唐山市高三(上)摸底數(shù)學試卷(文科)(解析版) 題型:解答題

          已知函致f (x)=x3+bx2+cx+d.
          (I)當b=0時,證明:曲線y=f(x)與其在點(0,f(0))處的切線只有一個公共點;
          (Ⅱ)若曲線y=f(x)在點(1,f(1))處的切線為12x+y-13=0,記函數(shù)y=f(x)的兩個極值點為x1,x2,當x1+x2=2時,求f(x1)+f(x2).

          查看答案和解析>>

          科目:高中數(shù)學 來源:2012-2013學年河北省唐山市高三(上)摸底數(shù)學試卷(理科)(解析版) 題型:解答題

          已知函致f (x)=x3+bx2+cx+d.
          (I)當b=0時,證明:曲線y=f(x)與其在點(0,f(0))處的切線只有一個公共點;
          (Ⅱ)若曲線y=f(x)在點(1,f(1))處的切線為12x+y-13=0,且它們只有一個公共點,求函數(shù)y=f(x)的所有極值之和.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2012-2013學年河北省唐山市高三(上)摸底數(shù)學試卷(文科)(解析版) 題型:解答題

          已知函致f (x)=x3+bx2+cx+d.
          (I)當b=0時,證明:曲線y=f(x)與其在點(0,f(0))處的切線只有一個公共點;
          (Ⅱ)若曲線y=f(x)在點(1,f(1))處的切線為12x+y-13=0,記函數(shù)y=f(x)的兩個極值點為x1,x2,當x1+x2=2時,求f(x1)+f(x2).

          查看答案和解析>>

          同步練習冊答案