日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知定義在實(shí)數(shù)集R上的偶函數(shù)f(x)在區(qū)間[0,+∞)上是單調(diào)減函數(shù),若f(1)<f(2x-1),則x的取值范圍是
          (0,1)
          (0,1)
          分析:根據(jù)f(x)為偶函數(shù),f(1)<f(2x-1),可得f(1)<f(|2x-1|),利用f(x)在區(qū)間[0,+∞)上是單調(diào)減函數(shù),可得1>|2x-1|,從而可得x的取值范圍.
          解答:解:∵f(x)為偶函數(shù),f(1)<f(2x-1),
          ∴f(1)<f(|2x-1|),
          ∵f(x)在區(qū)間[0,+∞)上是單調(diào)減函數(shù),
          ∴1>|2x-1|,
          ∴0<x<1
          ∴x的取值范圍是(0,1)
          故答案為:(0,1)
          點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)單調(diào)性的應(yīng)用,利用偶函數(shù)的定義及函數(shù)的單調(diào)性是解答本題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知定義在實(shí)數(shù)集R上的偶函數(shù)f(x)在區(qū)間[0,+∞)上是單調(diào)減函數(shù),則不等式f(1)>f(log2x)的解集為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          23、已知定義在實(shí)數(shù)集R上的函數(shù)f(x),其導(dǎo)函數(shù)為f'(x),滿足兩個(gè)條件:①對(duì)任意實(shí)數(shù)x,y都有f(x+y)=f(x)+f(y)+2xy成立;②f'(0)=2.
          (1)求函數(shù)的f(x)的表達(dá)式;
          (2)對(duì)任意x1,x2∈[-1,1],求證:|f(x1)-f(x2)|≤4|x1-x2|.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知定義在實(shí)數(shù)集R上的奇函數(shù)f(x),當(dāng)x>0時(shí),f(x)的圖象是拋物線的一部分,且該拋物線經(jīng)過(guò)點(diǎn)(1,0)、(3,0)和(0,3).
          (1)求出f(x)的解析式;
          (2)寫(xiě)出f(x)的單調(diào)區(qū)間;
          (3)已知集合A={(x,y)|y=f(x)},B={(x,y)|y=t,x∈R,t∈R},若A∩B有4個(gè)元素,求實(shí)數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知定義在實(shí)數(shù)集R上的函數(shù)f(x)滿足:(1)f(-x)=f(x);(2)f(4+x)=f(x);若當(dāng) x∈[0,2]時(shí),f(x)=-x2+1,則當(dāng)x∈[-6,-4]時(shí),f(x)等于( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知定義在實(shí)數(shù)集R上的函數(shù)f(x),同時(shí)滿足以下三個(gè)條件:
          ①f(-1)=2;②x<0時(shí),f(x)>1;③對(duì)任意實(shí)數(shù)x,y都有f(x+y)=f(x)f(y);
          (1)求f(0),f(-4)的值; 
          (2)判斷函數(shù)f(x)的單調(diào)性,并求出不等式f(-4x2)f(10x)≥
          116
          的解集.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案