日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓
          x2
          4
          +
          y2
          3
          =1
          的左、右焦點分別為F1、F2,過橢圓的右焦點作一條直線l交橢圓于點P、Q,則△F1PQ內(nèi)切圓面積的最大值是(  )
          分析:因為三角形內(nèi)切圓的半徑與三角形周長的乘積是面積的2倍,且△F1PQ的周長是定值8,所以只需求出△F1PQ面積的最大值.故可求△F1PQ內(nèi)切圓面積的最大值.
          解答:解:因為三角形內(nèi)切圓的半徑與三角形周長的乘積是面積的2倍,且△F1PQ的周長是定值8,所以只需求出△F1PQ面積的最大值.
          設(shè)直線l方程為x=my+1,與橢圓方程聯(lián)立得(3m2+4)y2+6my-9=0,
          設(shè)P(x1,y1),Q(x2,y2),則y1+y2=-
          6m
          3m2+4
          ,y1y2=-
          9
          3m2+4
          ,
          于是SF1PQ=
          1
          2
          |F1F2|•|y1-y2|=
          (y1+y2)2-4y1y2
          =12
          m2+1
          (3m2+4)2

          因為
          m2+1
          (3m2+4)2
          =
          1
          9m2+15+
          1
          m2+1
          =
          1
          9m2+9+
          1
          m2+1
          +6
          1
          16
          ,
          SF1PQ≤ 3
          所以內(nèi)切圓半徑r=
          2SF1PQ
          8
          3
          4
          ,
          因此其面積最大值是
          9
          16
          π

          故選D.
          點評:本題以橢圓為載體,考查直線與橢圓的位置關(guān)系,考查面積的最值,解題的關(guān)鍵是轉(zhuǎn)化為求△F1PQ面積的最大值.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知橢圓
          x24
          +y2=1
          的左、右兩個頂點分別為A,B,直線x=t(-2<t<2)與橢圓相交于M,N兩點,經(jīng)過三點A,M,N的圓與經(jīng)過三點B,M,N的圓分別記為圓C1與圓C2
          (1)求證:無論t如何變化,圓C1與圓C2的圓心距是定值;
          (2)當t變化時,求圓C1與圓C2的面積的和S的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓
          x2
          4
          +y2=1
          ,過E(1,0)作兩條直線AB與CD分別交橢圓于A,B,C,D四點,已知kABkCD=-
          1
          4

          (1)若AB的中點為M,CD的中點為N,求證:①kOMkON=-
          1
          4
          為定值,并求出該定值;②直線MN過定點,并求出該定點;
          (2)求四邊形ACBD的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知橢圓
          x2
          4
          +y2=1
          ,弦AB所在直線方程為:x+2y-2=0,現(xiàn)隨機向橢圓內(nèi)丟一粒豆子,則豆子落在圖中陰影范圍內(nèi)的概率為
          π-2
          π-2

          (橢圓的面積公式S=π•a•b,其中a是橢圓長半軸長,b是橢圓短半軸長)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•朝陽區(qū)三模)已知橢圓
          x2
          4
          +y2=1
          的焦點分別為F1,F(xiàn)2,P為橢圓上一點,且∠F1PF2=90°,則點P的縱坐標可以是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓
          x24
          +y2=1
          ,過點M(-1,0)作直線l交橢圓于A,B兩點,O是坐標原點.
          (1)求AB中點P的軌跡方程;
          (2)求△OAB面積的最大值,并求此時直線l的方程.

          查看答案和解析>>

          同步練習(xí)冊答案