(2013•重慶)某村莊擬修建一個無蓋的圓柱形蓄水池(不計厚度).設該蓄水池的底面半徑為r米,高為h米,體積為V立方米.假設建造成本僅與表面積有關,側面積的建造成本為100元/平方米,底面的建造成本為160元/平方米,該蓄水池的總建造成本為12000π元(π為圓周率).
(1)將V表示成r的函數(shù)V(r),并求該函數(shù)的定義域;
(2)討論函數(shù)V(r)的單調性,并確定r和h為何值時該蓄水池的體積最大.
科目:高中數(shù)學 來源: 題型:解答題
已知定義在上的奇函數(shù)
,當
時,
(1)求函數(shù)在
上的解析式;(2)若函數(shù)
在區(qū)間
上單調遞增,求實數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)g(x)=+1,h(x)=
,x∈(-3,a],其中a為常數(shù)且a>0,令函數(shù)f(x)=g(x)·h(x).
(1)求函數(shù)f(x)的表達式,并求其定義域;
(2)當a=時,求函數(shù)f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(2013•湖北)設n是正整數(shù),r為正有理數(shù).
(1)求函數(shù)f(x)=(1+x)r+1﹣(r+1)x﹣1(x>﹣1)的最小值;
(2)證明:;
(3)設x∈R,記[x]為不小于x的最小整數(shù),例如.令
的值.
(參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(2014·西安模擬)已知函數(shù)f(x)=2x,g(x)=+2.
(1)求函數(shù)g(x)的值域.
(2)求滿足方程f(x)-g(x)=0的x的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知(
)
(1)若方程有3個不同的根,求實數(shù)
的取值范圍;
(2)在(1)的條件下,是否存在實數(shù),使得
在
上恰有兩個極值點
,且滿足
,若存在,求實數(shù)
的值,若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com