日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)雙曲線的頂點(diǎn)是橢圓的焦點(diǎn),該雙曲線又與直線交于兩點(diǎn)A、B且OA⊥OB(O為原點(diǎn)).
          (1)求此雙曲線的標(biāo)準(zhǔn)方程; 
          (2)求|AB|的長(zhǎng)度.
          【答案】分析:(1)利用條件雙曲線的頂點(diǎn)是橢圓的焦點(diǎn),可以假雙曲線的方程為,再結(jié)合條件OA⊥OB,可求雙曲線的標(biāo)準(zhǔn)方程;(2)求|AB|的長(zhǎng)度,利用兩點(diǎn)間的距離公式求解.
          解答:解:(1)橢圓的焦點(diǎn)為(0,±1),依題意設(shè)雙曲線的方程為,設(shè)A(x1,y1),B(x2,y2),則,,∴15x1x2=9y1y2-18(y1+y2)+36,

          由 OA⊥OB,∴x1x2+y1y2=0,∴4y1y2-3(y1+y2)+6=0…①
          ,∴(15b2-9)y2+36y-(15b2+36)=0…②
          ,代入①中得b2=3∴雙曲線的方程為
          (2)將b2=3代入②式中,得4y2+4y-9=0,
          =
          點(diǎn)評(píng):本題(1)問(wèn)利用直線與曲線聯(lián)立方程組,采用設(shè)而不求的方法,關(guān)鍵是設(shè)點(diǎn);(2)問(wèn)則在(1)問(wèn)得基礎(chǔ)上借助于兩點(diǎn)間的距離公式求解.屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,已知橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的離心率為
          2
          2
          ,以該橢圓上的點(diǎn)和橢圓的左、右焦點(diǎn)F1,F(xiàn)2為頂點(diǎn)的三角形的周長(zhǎng)為4(
          2
          +1),一等軸雙曲線的頂點(diǎn)是該橢圓的焦點(diǎn),設(shè)P為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線PF1和PF2與橢圓的交點(diǎn)分別為A、B和C、D.
          (Ⅰ)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;
          (Ⅱ)設(shè)直線PF1、PF2的斜率分別為k1、k2,證明k1•k2=1;
          (Ⅲ)(此小題僅理科做)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,求λ的值;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)雙曲線的頂點(diǎn)是橢圓
          x2
          3
          +
          y2
          4
          =1
          的焦點(diǎn),該雙曲線又與直線
          15
          x-3y+6=0
          交于兩點(diǎn)A、B且OA⊥OB(O為原點(diǎn)).
          (1)求此雙曲線的標(biāo)準(zhǔn)方程; 
          (2)求|AB|的長(zhǎng)度.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2011•天津模擬)如圖,橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)與一等軸雙曲線相交,M是其中一個(gè)交點(diǎn),并且雙曲線的頂點(diǎn)是該橢圓的焦點(diǎn)F1,F(xiàn)2,雙曲線的焦點(diǎn)是橢圓的頂點(diǎn)A1,A2,△MF1F2的周長(zhǎng)為4(
          2
          +1).設(shè)P為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線PF1和PF2與橢圓的交點(diǎn)分別為A、B和C、D.
          (Ⅰ)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;
          (Ⅱ)設(shè)直線PF1、PF2的斜率分別為k1、k2,證明k1•k2=1;
          (Ⅲ)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,求λ的值;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          設(shè)雙曲線的頂點(diǎn)是橢圓
          x2
          3
          +
          y2
          4
          =1
          的焦點(diǎn),該雙曲線又與直線
          15
          x-3y+6=0
          交于兩點(diǎn)A、B且OA⊥OB(O為原點(diǎn)).
          (1)求此雙曲線的標(biāo)準(zhǔn)方程; 
          (2)求|AB|的長(zhǎng)度.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案