矩形的中心在坐標(biāo)原點(diǎn),邊
與
軸平行,
=8,
=6.
分別是矩形四條邊的中點(diǎn),
是線段
的四等分點(diǎn),
是線段
的四等分點(diǎn).設(shè)直線
與
,
與
,
與
的交點(diǎn)依次為
.
(1)求以為長軸,以
為短軸的橢圓Q的方程;
(2)根據(jù)條件可判定點(diǎn)都在(1)中的橢圓Q上,請以點(diǎn)L為例,給出證明(即證明點(diǎn)L在橢圓Q上).
(3)設(shè)線段的
(
等分點(diǎn)從左向右依次為
,線段
的
等分點(diǎn)從上向下依次為
,那么直線
與哪條直線的交點(diǎn)一定在橢圓Q上?(寫出結(jié)果即可,此問不要求證明)
(1);(2)詳見解析;(3)
解析試題分析:根據(jù)長軸長,短軸長
,可求出橢圓的方程;根據(jù)點(diǎn)
的坐標(biāo)可寫出直線
的方程,同理也可寫出直線
的方程,再求出它們的交點(diǎn)
的坐標(biāo),驗(yàn)證
在橢圓上即可得證;類比(2)的結(jié)論,即可得到直線
與直線
的交點(diǎn)一定在橢圓Q上.
試題解析:
根據(jù)題意可知,橢圓的焦點(diǎn)在軸上,可設(shè)其標(biāo)準(zhǔn)方程為
,
因?yàn)殚L軸長,短軸長
,所以
,
所以所求的橢圓的標(biāo)準(zhǔn)方程為:.
由題意知,
可得直線的方程為
,直線
的方程為
,
聯(lián)立可解得其交點(diǎn),將
的坐標(biāo)代入橢圓方程
成立,即點(diǎn)
在橢圓上得證.
另法:設(shè)直線、
交點(diǎn)
,
由三點(diǎn)共線得:
①
由三點(diǎn)共線得:
②
①②相乘,整理可得,即
所以L在橢圓上.
(3)類比(2)的結(jié)論,即可得到直線與直線
的交點(diǎn)一定在橢圓Q上.
考點(diǎn):本題考查了直線的方程,橢圓的方程的求解方法,以及直線與圓錐曲線的位置關(guān)系.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知中,點(diǎn)A、B的坐標(biāo)分別為
,點(diǎn)C在x軸上方。
(1)若點(diǎn)C坐標(biāo)為,求以A、B為焦點(diǎn)且經(jīng)過點(diǎn)C的橢圓的方程;
(2)過點(diǎn)P(m,0)作傾角為的直線
交(1)中曲線于M、N兩點(diǎn),若點(diǎn)Q(1,0)恰在以線段MN為直徑的圓上,求實(shí)數(shù)m的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為
,長軸長為
,直線
交橢圓于不同的兩點(diǎn)
.
(1)求橢圓的方程;
(2)求的取值范圍;
(3)若直線不經(jīng)過橢圓上的點(diǎn)
,求證:直線
的斜率互為相反數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)F是拋物線C:的焦點(diǎn),S是拋物線C在第一象限內(nèi)的點(diǎn),且|SF|=
.
(Ⅰ)求點(diǎn)S的坐標(biāo);
(Ⅱ)以S為圓心的動圓與軸分別交于兩點(diǎn)A、B,延長SA、SB分別交拋物線C于M、N兩點(diǎn);
①判斷直線MN的斜率是否為定值,并說明理由;
②延長NM交軸于點(diǎn)E,若|EM|=
|NE|,求cos∠MSN的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:
的左、右焦點(diǎn)和短軸的兩個端點(diǎn)構(gòu)成邊長為2的正方形.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點(diǎn)的直線
與橢圓
相交于
,
兩點(diǎn).點(diǎn)
,記直線
的斜率分別為
,當(dāng)
最大時,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
知橢圓的離心率為
,橢圓短軸的一個端點(diǎn)與兩個焦點(diǎn)構(gòu)成的三角形的面積為
,直線l的方程為:
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線l與橢圓相交于
、
兩點(diǎn)
①若線段中點(diǎn)的橫坐標(biāo)為
,求斜率
的值;
②已知點(diǎn),求證:
為定值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:
(
)的右焦點(diǎn)
,右頂點(diǎn)
,右準(zhǔn)線
且
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)動直線:
與橢圓
有且只有一個交點(diǎn)
,且與右準(zhǔn)線相交于點(diǎn)
,試探究在平面直角坐標(biāo)系內(nèi)是否存在點(diǎn)
,使得以
為直徑的圓恒過定點(diǎn)
?若存在,求出點(diǎn)
坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,且過點(diǎn)
.
(Ⅰ)求拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)與圓相切的直線
交拋物線于不同的兩點(diǎn)
若拋物線上一點(diǎn)
滿足
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,動點(diǎn)
到兩點(diǎn)
,
的距離之和等于4,設(shè)點(diǎn)
的軌跡為曲線C,直線過點(diǎn)
且與曲線C交于A,B兩點(diǎn).
(Ⅰ)求曲線C的軌跡方程;
(Ⅱ)是否存在△AOB面積的最大值,若存在,求出△AOB的面積;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com