日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 矩形的中心在坐標(biāo)原點(diǎn),邊軸平行,=8,=6.分別是矩形四條邊的中點(diǎn),是線段的四等分點(diǎn),是線段的四等分點(diǎn).設(shè)直線,,的交點(diǎn)依次為.

          (1)求以為長軸,以為短軸的橢圓Q的方程;
          (2)根據(jù)條件可判定點(diǎn)都在(1)中的橢圓Q上,請以點(diǎn)L為例,給出證明(即證明點(diǎn)L在橢圓Q上).
          (3)設(shè)線段等分點(diǎn)從左向右依次為,線段等分點(diǎn)從上向下依次為,那么直線與哪條直線的交點(diǎn)一定在橢圓Q上?(寫出結(jié)果即可,此問不要求證明)

          (1);(2)詳見解析;(3)

          解析試題分析:根據(jù)長軸長,短軸長,可求出橢圓的方程;根據(jù)點(diǎn)的坐標(biāo)可寫出直線的方程,同理也可寫出直線的方程,再求出它們的交點(diǎn)的坐標(biāo),驗(yàn)證在橢圓上即可得證;類比(2)的結(jié)論,即可得到直線與直線的交點(diǎn)一定在橢圓Q上.
          試題解析:
          根據(jù)題意可知,橢圓的焦點(diǎn)在軸上,可設(shè)其標(biāo)準(zhǔn)方程為,
          因?yàn)殚L軸長,短軸長,所以,
          所以所求的橢圓的標(biāo)準(zhǔn)方程為:
          由題意知,
          可得直線的方程為,直線的方程為
          聯(lián)立可解得其交點(diǎn),將的坐標(biāo)代入橢圓方程成立,即點(diǎn)在橢圓上得證.
          另法:設(shè)直線、交點(diǎn),
          三點(diǎn)共線得:                 ①
          三點(diǎn)共線得:            ②
          ①②相乘,整理可得,即
          所以L在橢圓上.
          (3)類比(2)的結(jié)論,即可得到直線與直線的交點(diǎn)一定在橢圓Q上.
          考點(diǎn):本題考查了直線的方程,橢圓的方程的求解方法,以及直線與圓錐曲線的位置關(guān)系.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知中,點(diǎn)A、B的坐標(biāo)分別為,點(diǎn)C在x軸上方。
          (1)若點(diǎn)C坐標(biāo)為,求以A、B為焦點(diǎn)且經(jīng)過點(diǎn)C的橢圓的方程;
          (2)過點(diǎn)P(m,0)作傾角為的直線交(1)中曲線于M、N兩點(diǎn),若點(diǎn)Q(1,0)恰在以線段MN為直徑的圓上,求實(shí)數(shù)m的值。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,長軸長為,直線交橢圓于不同的兩點(diǎn)
          (1)求橢圓的方程;
          (2)求的取值范圍;
          (3)若直線不經(jīng)過橢圓上的點(diǎn),求證:直線的斜率互為相反數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知點(diǎn)F是拋物線C:的焦點(diǎn),S是拋物線C在第一象限內(nèi)的點(diǎn),且|SF|=.

          (Ⅰ)求點(diǎn)S的坐標(biāo);
          (Ⅱ)以S為圓心的動圓與軸分別交于兩點(diǎn)A、B,延長SA、SB分別交拋物線C于M、N兩點(diǎn);
          ①判斷直線MN的斜率是否為定值,并說明理由;
          ②延長NM交軸于點(diǎn)E,若|EM|=|NE|,求cos∠MSN的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓的左、右焦點(diǎn)和短軸的兩個端點(diǎn)構(gòu)成邊長為2的正方形.

          (Ⅰ)求橢圓的方程;
          (Ⅱ)過點(diǎn)的直線與橢圓相交于,兩點(diǎn).點(diǎn),記直線的斜率分別為,當(dāng)最大時,求直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          知橢圓的離心率為,橢圓短軸的一個端點(diǎn)與兩個焦點(diǎn)構(gòu)成的三角形的面積為,直線l的方程為: 
          (Ⅰ)求橢圓的方程;
          (Ⅱ)已知直線l與橢圓相交于、兩點(diǎn)
          ①若線段中點(diǎn)的橫坐標(biāo)為,求斜率的值;
          ②已知點(diǎn),求證:為定值

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓)的右焦點(diǎn),右頂點(diǎn),右準(zhǔn)線

          (1)求橢圓的標(biāo)準(zhǔn)方程;
          (2)動直線與橢圓有且只有一個交點(diǎn),且與右準(zhǔn)線相交于點(diǎn),試探究在平面直角坐標(biāo)系內(nèi)是否存在點(diǎn),使得以為直徑的圓恒過定點(diǎn)?若存在,求出點(diǎn)坐標(biāo);若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,且過點(diǎn).

          (Ⅰ)求拋物線的標(biāo)準(zhǔn)方程;
          (Ⅱ)與圓相切的直線交拋物線于不同的兩點(diǎn)若拋物線上一點(diǎn)滿足,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          在平面直角坐標(biāo)系中,動點(diǎn)到兩點(diǎn),的距離之和等于4,設(shè)點(diǎn)的軌跡為曲線C,直線過點(diǎn)且與曲線C交于A,B兩點(diǎn).
          (Ⅰ)求曲線C的軌跡方程;
          (Ⅱ)是否存在△AOB面積的最大值,若存在,求出△AOB的面積;若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案