【題目】已知橢圓過點
,且
的離心率為
.
(1)求的方程;
(2)過的頂點
作兩條互相垂直的直線與橢圓分別相交于
兩點.若
的角平分線方程為
,求
的面積及直線
的方程.
【答案】(1);(2)
.
【解析】試題分析:(1)根據(jù)橢圓離心率和橢圓上一點的坐標(biāo),列方程組,解方程組可求得橢圓的標(biāo)準(zhǔn)方程.(2)設(shè)出過
點的直線方程,聯(lián)立直線的方程和橢圓的方程,求得
點的橫坐標(biāo),由此得到
,利用角平分線上的點到兩邊的距離相等建立方程,可求得斜率,由此求得三角形面積和直線方程.
試題解析:
(1)把點代入
中,得
,又
,∴
,
解得,
,
∴橢圓的方程為
.
(2)設(shè)過斜率為
的直線為
,代入橢圓方程
得
,①
則,
∴
,②
在直線上取一點
,則
到直線
的距離為
,
點到直線
的距離為
,
由已知條件,解得
或
.
代入②得,
,
∴的面積
.
由①得,
.
∴的方程為
,即
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體ABCD-A1B1C1D1中,E,F,P,Q,M,N分別是棱AB,AD,DD1,BB1,A1B1,A1D1的中點.求證:
(1)直線BC1∥平面EFPQ.
(2)直線AC1⊥平面PQMN.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】.如圖,在三棱錐V-ABC中,VO⊥平面ABC,O∈CD,VA=VB,AD=BD,則下列結(jié)論中不一定成立的是 ( )
A. AC=BC
B. VC⊥VD
C. AB⊥VC
D. S△VCD·AB=S△ABC·VO
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:
過橢圓
:
(
)的短軸端點,
,
分別是圓
與橢圓
上任意兩點,且線段
長度的最大值為3.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點作圓
的一條切線交橢圓
于
,
兩點,求
的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知e為自然對數(shù)的底數(shù),設(shè)函數(shù),則( ).
A. 當(dāng)k=1時,f(x)在x=1處取到極小值 B. 當(dāng)k=1時,f(x)在x=1處取到極大值
C. 當(dāng)k=2時,f(x)在x=1處取到極小值 D. 當(dāng)k=2時,f(x)在x=1處取到極大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小五、小一、小節(jié)、小快、小樂五位同學(xué)站成一排,若小一不出現(xiàn)在首位和末位,小五、小節(jié)、小樂中有且僅有兩人相鄰,求能滿足條件的不同排法共有多少種?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】16艘輪船的研究中,船的噸位區(qū)間為[192,3 246](單位:噸),船員的人數(shù)5~32人,船員人數(shù)y關(guān)于噸位x的回歸方程為=9.5+0.006 2x,
(1)若兩艘船的噸位相差1 000,求船員平均相差的人數(shù).
(2)估計噸位最大的船和最小的船的船員人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐,底面
是邊長為
的菱形,
,
為
的中點,
,
與平面
所成角的正弦值為
.
(1)在棱上求一點
,使
平面
;
(2)求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com