【題目】設(shè)函數(shù).
(1)請作出該函數(shù)在長度為一個周期的閉區(qū)間的大致圖象;
(2)試判斷該函數(shù)的奇偶性,并運(yùn)用函數(shù)的奇偶性定義說明理由;
(3)求該函數(shù)的單調(diào)遞增區(qū)間.
【答案】(1)見解析;(2)見解析;(3).
【解析】
(1)用五點(diǎn)法作圖,作出該函數(shù)在長度為一個周期的閉區(qū)間的大致圖象.(2)利用正弦函數(shù)的奇偶性作出判斷.(2)利用正弦函數(shù)的單調(diào)性,求函數(shù)單調(diào)遞增區(qū)間.
(1)函數(shù)f(x)=sin2x+cos2x=sin(2x+
),
列表:
2x+ | 0 | π |
| 2π | |
x | ﹣ | ||||
f(x) | 0 | 0 | ﹣ | 0 |
作圖:
(2)該函數(shù)為非奇非偶,
∵f(﹣x)=sin(﹣2x+
),而f(x)=
sin(2x+
),
﹣f(x)=﹣sin(2x+
),
∴f(﹣x)≠f(x),且f(x)≠﹣f(x),故f(x)為非奇非偶函數(shù).
(3)令2kπ﹣≤2x+
≤2kπ+
,求得kπ﹣
≤x≤kπ+
,
可得它的增區(qū)間為
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列滿足:
,且
,其前n項(xiàng)和
.
(1)求證:為等比數(shù)列;
(2)記為數(shù)列
的前n項(xiàng)和.
(i)當(dāng)時,求
;
(ii)當(dāng)時,是否存在正整數(shù)
,使得對于任意正整數(shù)
,都有
?如果存在,求出
的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,點(diǎn)E、F(E與A、D不重合)分別在棱AD,BD上,且EF⊥AD. 求證:(Ⅰ)EF∥平面ABC;
(Ⅱ)AD⊥AC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),
.
(1)在
處的切線方程;
(2)當(dāng)時,函數(shù)
有兩個極值點(diǎn),求
的取值范圍;
(3)若在點(diǎn)
處的切線與
軸平行,且函數(shù)
在
時,其圖象上每一點(diǎn)處切線的傾斜角均為銳角,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)請指出函數(shù)的定義域、周期性和奇偶性;(不必證明)
(2)請以正弦函數(shù)的性質(zhì)為依據(jù),并運(yùn)用函數(shù)的單調(diào)性定義證明:
在區(qū)間
上單調(diào)遞減.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是樣本容量為200的頻率分布直方圖.根據(jù)樣本的頻率分布直方圖估計,樣本數(shù)落在[6,10]內(nèi)的頻數(shù)為 ,數(shù)據(jù)落在(2,10)內(nèi)的概率約為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列的前
項(xiàng)和為
,若數(shù)列
的各項(xiàng)按如下規(guī)律排列:
,
,
,
,
,
,
,
,
,
,…,
,
, …,
,…有如下運(yùn)算和結(jié)論:①
;②數(shù)列
,
,
,
,…是等比數(shù)列;③數(shù)列
,
,
,
,…的前
項(xiàng)和為
;④若存在正整數(shù)
,使
,
,則
.其中正確的結(jié)論是_____.(將你認(rèn)為正確的結(jié)論序號都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=2,點(diǎn)M,N分別是邊AB,CD上的點(diǎn),且MN∥BC,.若將矩形ABCD沿MN折起使其形成60°的二面角(如圖).
(1)求證:平面CND⊥平面AMND;
(2)求直線MC與平面AMND所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com