日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2012•浦東新區(qū)三模)若一個底面為正三角形、側(cè)棱與底面垂直的棱柱的三視圖如圖所示,則這個棱柱的表面積為
          72+18
          3
          72+18
          3
          分析:由該棱柱的三視圖可知,該棱柱是正三棱柱,其中高是4,底面邊長是6,再由表面積公式即可得出答案.
          解答:解:由該棱柱的三視圖可知,該棱柱是高是4,底面邊長是6的正三棱柱,
          則棱柱的底面積是
          1
          2
          ×
          3
          2
          ×6×6=9
          3
          ,每個側(cè)面面積是4×6=24
          所以該三棱柱的表面積為2×9
          3
          +24×3=72+18
          3

          故答案為72+18
          3
          點評:本題考查由空間幾何體的三視圖求原幾何體的表面積問題,屬于基礎(chǔ)題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•浦東新區(qū)一模)函數(shù)y=
          log2(x-2) 
          的定義域為
          [3,+∞)
          [3,+∞)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•浦東新區(qū)一模)若X是一個非空集合,M是一個以X的某些子集為元素的集合,且滿足:
          ①X∈M、∅∈M;
          ②對于X的任意子集A、B,當(dāng)A∈M且B∈M時,有A∪B∈M;
          ③對于X的任意子集A、B,當(dāng)A∈M且B∈M時,A∩B∈M;
          則稱M是集合X的一個“M-集合類”.
          例如:M={∅,,{c},{b,c},{a,b,c}}是集合X={a,b,c}的一個“M-集合類”.已知集合X={a,b,c},則所有含{b,c}的“M-集合類”的個數(shù)為
          10
          10

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•浦東新區(qū)二模)手機(jī)產(chǎn)業(yè)的發(fā)展催生了網(wǎng)絡(luò)新字“孖”.某學(xué)生準(zhǔn)備在計算機(jī)上作出其對應(yīng)的圖象,其中A(2,2),如圖所示.在作曲線段AB時,該學(xué)生想把函數(shù)y=x
          1
          2
          ,x∈[0,2]
          的圖象作適當(dāng)變換,得到該段函數(shù)的曲線.請寫出曲線段AB在x∈[2,3]上對應(yīng)的函數(shù)解析式
          y=
          2
          (x-2)
          1
          2
          +2
          y=
          2
          (x-2)
          1
          2
          +2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•浦東新區(qū)一模)設(shè)復(fù)數(shù)z滿足|z|=
          10
          ,且(1+2i)z(i是虛數(shù)單位)在復(fù)平面上對應(yīng)的點在直線y=x上,求z.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•浦東新區(qū)二模)已知z=
          1
          1+i
          ,則
          .
          z
          =
          1
          2
          +
          1
          2
          i
          1
          2
          +
          1
          2
          i

          查看答案和解析>>

          同步練習(xí)冊答案