日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=aInx-ax,(a∈R).
          (1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
          1
          x

          (2)若a=-1,求證;f(x)≥f(1),且
          In2
          2
          In3
          3
          In4
          4
          In2010
          2010
          1
          2010
          分析:(1)要求f(x)的單調(diào)遞增區(qū)間,先求出f′(x),大于0得到增區(qū)間;小于零得到減區(qū)間即可.
          (2)因?yàn)閍=1時(shí)f(x)在(1,+∞)遞增,f(x)≥f(1)即:Inx≤x-1在(1,+∞)上恒成立,所以Inn≤n-1在n≥2,n∈N*恒成立;
          Inn
          n
          n-1
          n
          在n≥2,n∈N*恒成立,則ln2<1,ln3<2,ln4<3,…,ln2010<2009,利用不等式的證明方法,約分可得證.
          解答:解:(1)依題意得:f′(x)=
          -a(x-1)
          x
          a>0,單調(diào)遞增區(qū)間(0,1);
          a<0,單調(diào)遞增區(qū)間(1,+∞);a=0,無增區(qū)間.
          (2)若a=-1,由(1)得f(x)在(1,+∞)遞增,f(x)≥f(1)
          即:Inx≤x-1在(1,+∞)上恒成立,
          所以Inn≤n-1在n≥2,n∈N*恒成立
          Inn
          n
          n-1
          n
          在n≥2,n∈N*恒成立
          In2
          2
          In3
          3
          In4
          4
          In2010
          2010
          1
          2
          2
          3
          2009
          2010
          =
          1
          2010
          點(diǎn)評(píng):考查學(xué)生利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的能力,靈活運(yùn)用不等式的證明方法的能力.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          a-x2
          x
          +lnx  (a∈R , x∈[
          1
          2
           , 2])

          (1)當(dāng)a∈[-2,
          1
          4
          )
          時(shí),求f(x)的最大值;
          (2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點(diǎn),則不等式f(x)>
          34
          的解集為
          (-∞,-2)
          (-∞,-2)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(diǎn)(1,3),解不等式f(
          2x
          )>3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
          (1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
          (2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
          f(x)   ,  x>0
          -f(x) ,    x<0
           給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號(hào)是
           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案