日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 記函數(shù)f(x)=f1(x),f(f(x))=f2(x),它們定義域的交集為D,若對任意的x∈S,f2(x)=x,則稱f(x)是集合M的元素,例如f(x)=-x+1,對任意x∈R,f2(x)=f(f(x))=-(-x+1)+1=x,故f(x)=-x+1∈M.
          (1)設(shè)函數(shù)f(x)=log2(1-2x),判斷f(x)是否是M的元素;
          (2)f(x)=
          axx+b
          ∈M(a<0),求使f(x)<1成立的x的范圍.
          分析:(1)直接根據(jù)題中的定義判斷f(x)=log2(1-2x)是否是M的元素即可;
          (2)根據(jù)定義,問題可轉(zhuǎn)換為f2(x)=f(f(x))=x對一切定義域中x恒成立,建立等式,從而可得:(a+b)x2-(a2-b2)x=0恒成立,即a+b=0,故可解不等式,即可求使f(x)<1成立的x的范圍.
          解答:解:(1)∵f(f(x))=log2(1-2log2(1-2x))=log2(1-1+2x)=x
          ∴f(x)=log2(1-2x)∈M
          (2)∵f(x)=
          ax
          x+b
          ∈M
          ,
          ∴f2(x)=f(f(x))=x對一切定義域中x恒成立.
          a•
          ax
          x+b
          ax
          x+b
          +b
          =x

          解得:(a+b)x2-(a2-b2)x=0恒成立,故a+b=0
          由f(x)<1,得到
          ax
          x-a
          -1<0
          ,
          (a-1)x+a
          x-a
          <0
          ,
          由a<0,
          x-
          a
          1-a
          x-a
          >0
          0>
          a
          1-a
          >a
          ,
          故x的范圍為:x>
          a
          1-a
          或  x<a     (13分)
          點評:本題主要考查了對數(shù)函數(shù)及其應用,以及分式不等式的解法和新定義,根據(jù)是對新定義的理解,同時考查學生等價轉(zhuǎn)化問題的能力.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          (2007•浦東新區(qū)二模)記函數(shù)f(x)=f1(x),f(f(x))=f2(x),它們定義域的交集為D,若對任意的x∈D,f2(x)=x,則稱f(x)是集合M的元素.
          (1)判斷函數(shù)f(x)=-x+1,g(x)=2x-1是否是M的元素;
          (2)設(shè)函數(shù)f(x)=log2(1-2x),求f(x)的反函數(shù)f-1(x),并判斷f(x)是否是M的元素;
          (3)f(x)=
          axx+b
          ∈M(a<0),求使f(x)<1成立的x的范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          記函數(shù)f(x)=f1(x),f(f(x))=f2(x),它們定義域的交集為D,若對任意的x∈D,f2(x)=x,則稱f(x)是集合M的元素,
          例如f(x)=-x+1,對任意x∈R,f2(x)=f(f(x))=-(-x+1)+1=x,故f(x)=-x+1∈M.
          (1)設(shè)函數(shù)f(x)=log2(1-2x),判斷f(x)是否是M的元素,并求f(x)的反函數(shù)f-1(x);
          (2)f(x)=
          axx+b
          ∈M
          (a<0),求使f(x)<1成立的x的范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          記函數(shù)f(x)=f1(x),f(f(x))=f2(x),它們定義域的交集為D,若對任意的x∈D,f2(x)=x,則稱f(x)是集合M的元素.
          (1)判斷函數(shù)f(x)=-x=1,lg(x)=2x-1是否是M的元素;
          (2)設(shè)函數(shù)f(x)=loga(1-ax),求f(x)的反函數(shù)f-1(x),并判斷f(x)是否是M的元素.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2007•浦東新區(qū)二模)記函數(shù)f(x)=f1(x),f(f(x))=f2(x),它們定義域的交集為D,若對任意的x∈D,f2(x)=x,則稱f(x)是集合M的元素.
          (1)判斷函數(shù)f(x)=-x+1,g(x)=2x-1是否是M的元素;
          (2)設(shè)函數(shù)f(x)=loga(1-ax),求f(x)的反函數(shù)f-1(x),并判斷f(x)是否是M的元素;
          (3)若f(x)≠x,寫出f(x)∈M的條件,并寫出兩個不同于(1)、(2)中的函數(shù).

          查看答案和解析>>

          同步練習冊答案