日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)已知函數(shù)f(x)的定義域?yàn)閇-2,+∞),部分對(duì)應(yīng)值如下表.f′(x)為f(x)的導(dǎo)函數(shù),函數(shù)y=f′(x)的圖象如下圖所示.若兩正數(shù)a,b滿足f(2a+b)<1,則
          2b+6
          a+3
          的取值范圍是( 。
          X -2 0 4
          f(x) 1 -1 1
          A、(
          6
          5
          ,
          14
          3
          )
          B、(
          12
          7
          ,
          8
          3
          )
          C、(
          4
          3
          12
          5
          )
          D、(-
          2
          3
          ,6)
          分析:由導(dǎo)函數(shù)的圖象得到導(dǎo)函數(shù)的符號(hào),利用導(dǎo)函數(shù)的符號(hào)與函數(shù)單調(diào)性的關(guān)系得到f(x)的單調(diào)性,結(jié)合函數(shù)的單調(diào)性求出不等式的解即a,b的關(guān)系,畫出關(guān)于a,b的不等式表示的平面區(qū)域,給函數(shù)與幾何意義,結(jié)合圖象求出其取值范圍.
          解答:精英家教網(wǎng)解:由導(dǎo)函數(shù)的圖形知,
          x∈(-2,0)時(shí),f′(x)<0;
          x∈(0,+∞)時(shí),f′(x)>0
          ∴f(x)在(-2,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增;
          ∵f(2a+b)<1
          ∴-2<2a+b<4
          ∵a>0,b>0
          ∴a,b滿足的可行域?yàn)?BR>
          2b+6
          a+3
          =2
          b+3
          a+3
          表示點(diǎn)(a,b)與(-3,-3)連線的斜率的2倍
          由圖知當(dāng)點(diǎn)為(2.,0)時(shí)斜率最小,當(dāng)點(diǎn)為(0,4)時(shí)斜率最大
          所以
          2b+6
          a+3
          的取值范圍為(
          6
          5
          ,
          14
          3
          )

          故選A
          點(diǎn)評(píng):利用導(dǎo)函數(shù)求函數(shù)的單調(diào)性問題,應(yīng)該先判斷出導(dǎo)函數(shù)的符號(hào),當(dāng)導(dǎo)函數(shù)大于0對(duì)應(yīng)函數(shù)單調(diào)遞增;當(dāng)導(dǎo)函數(shù)小于0,對(duì)應(yīng)函數(shù)單調(diào)遞減.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=log3
          3
          x
          1-x
          ,M(x1,y1),N(x2,y2)
          是f(x)圖象上的兩點(diǎn),橫坐標(biāo)為
          1
          2
          的點(diǎn)P滿足2
          OP
          =
          OM
          +
          ON
          (O為坐標(biāo)原點(diǎn)).
          (Ⅰ)求證:y1+y2為定值;
          (Ⅱ)若Sn=f(
          1
          n
          )+f(
          2
          n
          )+…+f(
          n-1
          n
          )
          ,其中n∈N*,且n≥2,求Sn;
          (Ⅲ)已知an=
          1
          6
          ,                          n=1
          1
          4(Sn+1)(Sn+1+1)
          ,n≥2
          ,其中n∈N*,Tn為數(shù)列{an}的前n項(xiàng)和,若Tn<m(Sn+1+1)對(duì)一切n∈N*都成立,試求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          下列說法正確的有( 。﹤(gè).
          ①已知函數(shù)f(x)在(a,b)內(nèi)可導(dǎo),若f(x)在(a,b)內(nèi)單調(diào)遞增,則對(duì)任意的?x∈(a,b),有f′(x)>0.
          ②函數(shù)f(x)圖象在點(diǎn)P處的切線存在,則函數(shù)f(x)在點(diǎn)P處的導(dǎo)數(shù)存在;反之若函數(shù)f(x)在點(diǎn)P處的導(dǎo)數(shù)存在,則函數(shù)f(x)圖象在點(diǎn)P處的切線存在.
          ③因?yàn)?>2,所以3+i>2+i,其中i為虛數(shù)單位.
          ④定積分定義可以分為:分割、近似代替、求和、取極限四步,對(duì)求和In=
          n
          i=1
          f(ξi)△x
          中ξi的選取是任意的,且In僅于n有關(guān).
          ⑤已知2i-3是方程2x2+px+q=0的一個(gè)根,則實(shí)數(shù)p,q的值分別是12,26.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=sin(2x-
          π
          6
          ),g(x)=sin(2x+
          π
          3
          ),直線y=m與兩個(gè)相鄰函數(shù)的交點(diǎn)為A,B,若m變化時(shí),AB的長度是一個(gè)定值,則AB的值是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (Ⅰ)已知函數(shù)f(x)=x3-x,其圖象記為曲線C.
          (i)求函數(shù)f(x)的單調(diào)區(qū)間;
          (ii)證明:若對(duì)于任意非零實(shí)數(shù)x1,曲線C與其在點(diǎn)P1(x1,f(x1))處的切線交于另一點(diǎn)P2(x2,f(x2)),曲線C與其在點(diǎn)P2(x2,f(x2))處的切線交于另一點(diǎn)P3(x3,f(x3)),線段P1P2,P2P3與曲線C所圍成封閉圖形的面積記為S1,S2.則
          S1S2
          為定值;
          (Ⅱ)對(duì)于一般的三次函數(shù)g(x)=ax3+bx2+cx+d(a≠0),請(qǐng)給出類似于(Ⅰ)(ii)的正確命題,并予以證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=x3-ax+b存在極值點(diǎn).
          (1)求a的取值范圍;
          (2)過曲線y=f(x)外的點(diǎn)P(1,0)作曲線y=f(x)的切線,所作切線恰有兩條,切點(diǎn)分別為A、B.
          (。┳C明:a=b;
          (ⅱ)請(qǐng)問△PAB的面積是否為定值?若是,求此定值;若不是求出面積的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案