日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在下列命題中:
          ①若f(x)是定義在[-1,1]上的偶函數(shù),且在[-1,0]上是增函數(shù),θ∈(
          π
          4
          ,
          π
          2
          ),則f(sinθ)>f(cosθ);
          ②若銳角α、β滿足cosα>sinβ,則α+β<
          π
          2

          ③若f(x)=2cos2
          x
          2
          -1,則f(x+π)=f(x)對x∈R恒成立;
          ④對于任意實數(shù)a,要使函數(shù)y=5cos(
          2k+1
          3
          πx-
          π
          6
          )(k∈N*)在區(qū)間[a,a+3]上的值
          5
          4
          出現(xiàn)的次數(shù)不小于4次,又不多于8次,則k可以取2和3.       
          其中真命題的序號是
          ②④
          ②④
          分析:①由偶函數(shù)對稱區(qū)間上的單調(diào)性相反可知,函數(shù)在[0,1]上單調(diào)遞減,結(jié)合θ∈(
          π
          4
          π
          2
          )時,可判斷sinθ與cosθ的大小,進而可比較
          ②由銳角α、β滿足cosα>sinβ=cos(
          π
          2
          ),可判斷
          ③f(x)=2cos2
          x
          2
          -1=cosx,函數(shù)的周期為T=2π,可判斷
          ④由于函數(shù)y=5cos(
          2k+1
          3
          πx-
          π
          6
          )在一個周期內(nèi)函數(shù)值
          5
          4
          出現(xiàn)兩次,若滿在區(qū)間[a,a+3]上的值
          5
          4
          出現(xiàn)的次數(shù)不小于4次,又不多于8次,則用檢驗當(dāng)k=2,3時函數(shù)的周期即可判斷
          解答:解:①由偶函數(shù)對稱區(qū)間上的單調(diào)性相反可知,函數(shù)在[0,1]上單調(diào)遞減,又θ∈(
          π
          4
          π
          2
          )時,1>sinθ>cosθ>0,則f(sinθ)∠f(cosθ);故①錯誤
          ②若銳角α、β滿足cosα>sinβ=cos(
          π
          2
          ),則α<
          π
          2
          ,則α+β<
          π
          2
          ;②正確
          ③f(x)=2cos2
          x
          2
          -1=cosx,函數(shù)的周期為T=2π,則f(x+π)=f(x)對x∈R恒成立;③錯誤
          ④由于函數(shù)y=5cos(
          2k+1
          3
          πx-
          π
          6
          )在一個周期內(nèi)函數(shù)值
          5
          4
          出現(xiàn)兩次,若滿在區(qū)間[a,a+3]上的值
          5
          4
          出現(xiàn)的次數(shù)不小于4次,又不多于8次,則
          3T
          2
          ≤3
          7T
          2
          ≥3

          當(dāng)k=2時,周期T=
          6
          5
          ,則函數(shù)y=5cos(
          2k+1
          3
          πx-
          π
          6
          )在區(qū)間[a,a+3]內(nèi)函數(shù)值
          5
          4
          出現(xiàn)6次,滿足題意     
          當(dāng)k=3時,周期T=
          6
          7
          ,則函數(shù)y=5cos(
          2k+1
          3
          πx-
          π
          6
          )在區(qū)間[a,a+3]內(nèi)函數(shù)值
          5
          4
          出現(xiàn)最大出現(xiàn)8次,滿足題意;故④正確
          故答案為:②④
          點評:本題綜合考查了偶函數(shù)的對稱區(qū)間上的單調(diào)性的應(yīng)用,三角函數(shù)的誘導(dǎo)公式的應(yīng)用,函數(shù)的周期公式的應(yīng)用及二倍角公式、余弦函數(shù)的性質(zhì)等函數(shù)知識的綜合應(yīng)用
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          下列命題中:①函數(shù),f(x)=sinx+
          2
          sinx
          (x∈(0,π))的最小值是2
          2
          ;②在△ABC中,若sin2A=sin2B,則△ABC是等腰或直角三角形;③如果正實數(shù)a,b,c滿足a + b>c則
          a
          1+a
          +
          b
          1+b
          c
          1+c
          ;④如果y=f(x)是可導(dǎo)函數(shù),則f′(x0)=0是函數(shù)y=f(x)在x=x0處取到極值的必要不充分條件.其中正確的命題是( 。
          A、①②③④B、①④
          C、②③④D、②③

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在下列命題中:①已知兩條不同直線m、n兩上不同平面α,β,m⊥α,n⊥β,m⊥n,則α⊥β;②函數(shù)y=sin(2x-
          π
          6
          )圖象的一個對稱中心為點(
          π
          3
          ,0);③若函數(shù)f(x)在R上滿足f(x+1)=
          1
          f(x)
          ,則f(x)是周期為2的函數(shù);④在△ABC中,若
          OA
          +
          OB
          =2
          CO
          ,則S△ABC=S△BOC其中正確命題的序號為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在下列命題中,所有正確命題的序號是
          ②③
          ②③

          ①命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x<0”;
          ②若p是q的充分不必要條件,則?p是?q的必要不充分條件;
          ③函數(shù)f(x)=lg(x2+x+a)的值域為R的充要條件是a≤
          1
          4

          ④若函數(shù)f(x)=
          2x-a
          x-1
          在(1,+∞)內(nèi)為增函數(shù),則a<2.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在下列命題中,正確的有
          1
          1
          個.
          (1)函數(shù)y=tanx在定義域內(nèi)是增函數(shù);
          (2)存在α∈R,使函數(shù)f(x)=cos(x+α)是奇函數(shù);
          (3)y=tanx的圖象既是中心對稱圖形,又是軸對稱圖形;
          (4)若
          a
          b
          b
          c
          ,則必有
          a
          c
          ;
          (5)函數(shù)f(x)=|sin(x+
          π
          3
          )|
          (
          π
          3
          ,
          6
          )
          上是減函數(shù).

          查看答案和解析>>

          同步練習(xí)冊答案