日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知定義在區(qū)間(0,+∞)上的函數(shù)f(x)滿足:對?x1,x2∈(0,+∞)恒有數(shù)學(xué)公式,且當(dāng)x>1時,f(x)<0.
          (1)求f(1)的值;
          (2)證明:函數(shù)f(x)在區(qū)間(0,+∞)上為單調(diào)遞減函數(shù);
          (3)若f(3)=-1,
          (。┣骹(9)的值;(ⅱ)解不等式:f(3x)<-2.

          解:(1)由題意知,對定義域內(nèi)的任意x1,x2都有
          令x1=x2=1,代入上式解得f(1)=0,
          (2)設(shè)x2>x1>0,則
          ∵x2>x1>0,∴,∴<0,
          即f(x2)-f(x1)<0,∴f(x2)<f(x1
          ∴f(x)在(0,+∞)上是減函數(shù).
          (3)∵f(3)=-1,∴f(9)=f(3)+f(3)=-2,
          ∴不等式f(3x)<-2可化為f(3x)<f(9),
          又∵函數(shù)在(0,+∞)上是減函數(shù),∴3x>9,
          即3x>32,解得:x>2,
          即不等式的解集為 (2,+∞).
          分析:(1)根據(jù)題意和式子的特點,先令x1=x2=1求出f(1)=0;
          (2)先任取x2>x1>0,再代入所給的式子進行作差變形,利用 <0,判斷符號并得出結(jié)論;
          (3)根據(jù)題意,把不等式轉(zhuǎn)化為f(3x)<f(9),再由(2)的結(jié)論知3x>9,故解此不等式即可.
          點評:本題的考點是抽象函數(shù)的性質(zhì)及其應(yīng)用,根據(jù)證明函數(shù)奇偶性和單調(diào)性的方法,反復(fù)給x1和x2值利用給出恒等式,注意條件的利用;求解不等式時利用函數(shù)的奇偶性及條件轉(zhuǎn)化為兩個函數(shù)值的關(guān)系,進而由函數(shù)的單調(diào)性轉(zhuǎn)化為自變量的大。
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          13、已知定義在區(qū)間(0,+∞)的非負(fù)函數(shù)f(x)的導(dǎo)數(shù)為f'(x),其滿足xf'(x)+f(x)<0,則在0<a<b時,下列結(jié)論一定正確的是
          (2)(3)

          (1)af'(a)<bf'(b)(2)af(a)>bf(b)(3)bf(a)>af(b)(4)bf'(a)>af'(b)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知定義在區(qū)間(0,+∞)上的函數(shù)f(x)滿足f(
          x1x2
          )=f(x1)-f(x2),且當(dāng)x>1時,f(x)<0.
          ①求f(1)的值;
          ②判斷f(x)的單調(diào)性;
          ③若f(3)=-1,解不等式f(|x|)<-2.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知定義在區(qū)間(0,+∞)上的函數(shù)f(x)滿足f(
          x1x2
          )=f(x1)-f(x2),且當(dāng)x>1時,f(x)<0.
          (1)求f(1)的值;
          (2)判斷并證明f(x)的單調(diào)性;
          (3)若f(3)=-1,求f(x)在[2,9]上的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知定義在區(qū)間(0,+∞)上的函數(shù)f(x)滿足f(
          x1x2
          )=f(x1)-f(x2),且當(dāng)x>1時,f(x)<0.
          (1)求f(1)的值.
          (2)判斷f(x)的單調(diào)性.
          (3)若f(3)=-1,解不等式f(|x|)<-2.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知定義在區(qū)間(0,+∞)上的函數(shù)f(x)滿足f(
          x1x2
          )=f(x1)-f(x2)
          ,且當(dāng)x>1時,f(x)<0.
          (1)求f(1)的值;
          (2)判斷f(x)的單調(diào)性并予以證明;
          (3)若f(3)=-1,解不等式f(log2x)>-2.

          查看答案和解析>>

          同步練習(xí)冊答案