日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)f(x)是定義在R上以2為周期的偶函數(shù),已知x∈(0,1)時,f(x)=log
          1
          2
          (1-x),則函數(shù)f(x)在(1,2)上(  )
          A、是減函數(shù),且f(x)>0
          B、是增函數(shù),且f(x)>0
          C、是增函數(shù),且f(x)<0
          D、是減函數(shù),且f(x)<0
          分析:先求出函數(shù)f(x)在 (-1,0)上的解析式,再利用周期性求出函數(shù)f(x)在(1,2)上 的解析式,從而確定函數(shù)的單調(diào)性及函數(shù)的值域.
          解答:解:設(shè) x∈(-1,0),則-x∈(0,1),故 f(-x)=log
          1
          2
          (1+x).
          又f(x)是定義在R上以2為周期的偶函數(shù),故 f(x)=log
          1
          2
          (1+x).
          再令 1<x<2,則-1<x-2<0,∴f(x-2)=log
          1
          2
          [1+(x-2)],
          ∴f(x)=log
          1
          2
          [x-1],
          由1<x<2 可得 0<x-1<1,
          故函數(shù)f(x)在(1,2)上是減函數(shù),且f(x)>0,
          故選A.
          點評:本題考查函數(shù)的單調(diào)性,奇偶性和周期性,以及求函數(shù)的解析式,求出函數(shù)f(x)在(1,2)上 的解析式,是解題的難點和關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          3、設(shè)f(x)是定義在R上的奇函數(shù),且f(3)+f(-2)=2,則f(2)-f(3)=
          -2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時,f(x)=2x+2x-1,則f(-1)=( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)f(x)是定義在R上的奇函數(shù),且f(1)=0,當(dāng)x>0時,有f(x)>xf′(x)恒成立,則不等式xf(x)>0的解集為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)f(x)是定義在R上的奇函數(shù),且y=f(x)滿足f(1-x)=f(x),且f( 
          1
          2
           )=2
          ,則f(1)+f(
          3
          2
          )+f(2)+f(
          5
          2
          )+f(3)+f(
          7
          2
          )
          =
          -2
          -2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)f(x)是定義在R上的奇函數(shù),且對任意實數(shù)x,恒有f(x+2)=-f(x).當(dāng)x∈[0,2]時,f(x)=2x-x2+a(a是常數(shù)).則x∈[2,4]時的解析式為( 。
          A、f(x)=-x2+6x-8B、f(x)=x2-10x+24C、f(x)=x2-6x+8D、f(x)=x2-6x+8+a

          查看答案和解析>>

          同步練習(xí)冊答案