日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知四邊形ABCD為直角梯形,∠ABC=90°,AD∥BC,AD=2,AB=BC=1,沿AC將△ABC折起,使點(diǎn)B到點(diǎn)P的位置,且平面PAC⊥平面ACD.
          (I)證明:DC⊥平面APC;
          (II)求二面角B﹣AP﹣D的余弦值.
          (I)證明:∵∠ABC=90°,AB=BC=1,∴AC=
          ∵四邊形ABCD為直角梯形,AD=2,AB=BC=1
          ∴CD=
          ∴AC2+CD2=AD2,∴∠ACD=90°
          ∴DC⊥AC
          ∴平面PAC⊥平面ACD,平面PAC∩平面ACD=AC.
          ∴DC⊥平面APC;
          (II)建立如圖所示的空間直角坐標(biāo)系,
          則A(0,0,0),B(1,0,0),D(0,2,0),P(
          ,=,
          設(shè)平面APB的法向量為,
          平面APD的法向量為
          ,

          ∴可取
          同理
          =
          ∵二面角B﹣AP﹣D的平面角為鈍二面角
          ∴二面角B﹣AP﹣D的余弦值為
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知四邊形ABCD為直角梯形,∠ABC=90°,AD∥BC,AD=2,AB=BC=1,沿AC將△ABC折起,使點(diǎn)B到點(diǎn)P的位置,且平面PAC⊥平面ACD.
          (I)證明:DC⊥平面APC;
          (II)求棱錐A-PBC的高.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (幾何證明選講選做題)如圖,已知四邊形ABCD內(nèi)接于⊙O,且AB為⊙O的直徑,直線MN切
          ⊙O于D,∠MDA=45°,則∠DCB=
          135°
          135°

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖:已知四邊形ABCD是正方形,PD⊥平面ABCD,PD=AD,點(diǎn)E,F(xiàn)分別是線段PB,AD的中點(diǎn)
          (1)求證:FE∥平面PCD;
          (2)求異面直線DE與AB所成的角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知四邊形ABCD為直角梯形,∠ABC=90°,AD∥BC,AD=2,AB=BC=1,沿AC將△ABC折起,使點(diǎn)B到點(diǎn)P的位置,且平面PAC⊥平面ACD.
          (I)證明:DC⊥平面APC;
          (II)求二面角B-AP-D的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知四邊形ABCD是菱形,PA⊥平面ABCD,PA=AB=BD=2,AC與BD交于E點(diǎn),F(xiàn)是PD的中點(diǎn).
          (1)求證:PB∥平面AFC;
          (2)求多面體PABCF的體積.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案