日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 1) 設(shè)≤1,求一個正常數(shù)a,使得x;

          (2)設(shè)≤1,,求證:

          (1)同解析,(2)同解析。


          解析:

          ⑴  x≤可化為≥0,令=,

          ,由得,

          =3a-2≥0,=-3a+4≥0,∴,          ①

          ∈[-1,1],≥0,即    ②

          由①、②得,.

          從而當(dāng)≤1時,=≥0,即x≤.

          ⑵  由⑴知,對≤1,有,(i=1,2,…,n)

          將這n個式子求和,得.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)y=f(x)(x∈D),方程f(x)=x的根x0稱為函數(shù)f(x)的不動點(diǎn);若a1∈D,an+1=f(an)(n∈N*),則稱{an} 為由函數(shù)f(x)導(dǎo)出的數(shù)列.
          設(shè)函數(shù)g(x)=
          4x+2
          x+3
          ,h(x)=
          ax+b
          cx+d
          (c≠0,ad-bc≠0,(d-a)2+4bc>0)

          (1)求函數(shù)g(x)的不動點(diǎn)x1,x2;
          (2)設(shè)a1=3,{an} 是由函數(shù)g(x)導(dǎo)出的數(shù)列,對(1)中的兩個不動點(diǎn)x1,x2(不妨設(shè)x1<x2),數(shù)列求證{
          an-x1
          an-x2
          }
          是等比數(shù)列,并求
          lim
          n→∞
          an
          ;
          (3)試探究由函數(shù)h(x)導(dǎo)出的數(shù)列{bn},(其中b1=p)為周期數(shù)列的充要條件.
          注:已知數(shù)列{bn},若存在正整數(shù)T,對一切n∈N*都有bn+T=bn,則稱數(shù)列{bn} 為周期數(shù)列,T是它的一個周期.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          對于數(shù)列{xn},如果存在一個正整數(shù)m,使得對任意的n(n∈N*)都有xn+m=xn成立,那么就把這樣一類數(shù)列{xn}稱作周期為m的周期數(shù)列,m的最小值稱作數(shù)列{xn}的最小正周期,以下簡稱周期.例如當(dāng)xn=2時,{xn}是周期為1的周期數(shù)列,當(dāng)yn=sin(
          π
          2
          n)
          時,{yn}的周期為4的周期數(shù)列.
          (1)設(shè)數(shù)列{an}滿足an+2=λ•an+1-an(n∈N*),a1+a,a2=b(a,b不同時為0),且數(shù)列{an}是周期為3的周期數(shù)列,求常數(shù)λ的值;
          (2)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且4Sn=(an+1)2
          ①若an>0,試判斷數(shù)列{an}是否為周期數(shù)列,并說明理由;
          ②若anan+1<0,試判斷數(shù)列{an}是否為周期數(shù)列,并說明理由.
          (3)設(shè)數(shù)列{an}滿足an+2=-an+1-an(n∈N*),a1=1,a2=2,bn=an+1,數(shù)列{bn}的前n項(xiàng)和Sn,試問是否存在p、q,使對任意的n∈N*都有p≤
          Sn
          n
          ≤q
          成立,若存在,求出p、q的取值范圍;不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知點(diǎn)P為圓周x2+y2=4的動點(diǎn),過P點(diǎn)作PH⊥x軸,垂足為H,設(shè)線段PH的中點(diǎn)為E,記點(diǎn)E的軌跡方程為C,點(diǎn)A(0,1)
          (1)求動點(diǎn)E的軌跡方程C;
          (2)若斜率為k的直線l經(jīng)過點(diǎn)A(0,1)且與曲線C的另一個交點(diǎn)為B,求△OAB面積的最大值及此時直線l的方程;
          (3)是否存在方向向量
          a
          =(1,k)(k≠0)
          的直線l,使得l與曲線C交與兩個不同的點(diǎn)M,N,且有|
          AM
          |=|
          AN
          |
          ?若存在,求出k的取值范圍;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知關(guān)于x的一元二次函數(shù)f(x)=ax2-4bx+1.
          (1)設(shè)集合P={1,2,3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機(jī)取一個數(shù)作為a和b,求函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率;
          (2)設(shè)點(diǎn)(a,b)是區(qū)域
          x+y-8≤0
          x>0
          y>0
          內(nèi)的隨機(jī)點(diǎn),記A={y=f(x)有兩個零點(diǎn),其中一個大于1,另一個小于1},求事件A發(fā)生的概率.

          查看答案和解析>>

          同步練習(xí)冊答案