日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=
          1
          3
          x3+
          a-3
          2
          x2+(a2-3a)x-2a

          (I)如果對任意x∈[1,2],f′(x)>a2恒成立,求實數(shù)a的取值范圍;
          (II)設函數(shù)f(x)的兩個極值點分別為x1,x2判斷下列三個代數(shù)式:①x1+x2+a,②
          x21
          +
          x22
          +a2
          ,③
          x31
          +
          x32
          +a3

          中有幾個為定值?并且是定值請求出;若不是定值,請把不是定值的表示為函數(shù)g(a),并求出g(a)的最小值.
          (I)由f(x)=
          1
          3
          x3+
          a-3
          2
          x2+(a2-3a)x-2a

          得f'(x)=x2+(a-3)x+a2-3a,對任意x∈[1,2],f'(x)>a2恒成立,
          即x2+(a-3)x-3a>0,(x-3)(x+a)>0對任意x∈[1,2]恒成立,
          又x-3<0恒成立,所以x+a<0對x∈[1,2]恒成立,所以a<-x恒成立,
          所以a<-2.…(4分)
          (II)依題意知x1,x2恰為方程f'(x)=x2+(a-3)x+a2-3a=0的兩根,
          所以
          (a-3)2-4(a2-3a)>0
          x1+x2=3-a
          x1x2=a2-3a
          解得-1<a<3…(5分)
          所以①x1+x2+a=3為定值,…(6分)
          x21
          +
          x22
          +a2=(x1+x2)2-2x1x2+a2=9
          為定值,…(7分)
          x31
          +
          x32
          +a3=(x1+x2)(
          x21
          -x1x2+
          x22
          )+a3=3a3-9a2+27
          不是定值
          即g(a)=3a3-9a2+27(-1<a<3),可得g'(a)=9a2-18a,
          當a∈[-1,0]時,g'(a)>0,g(a)=3a3-9a2+27在a∈[-1,0]是增函數(shù),
          當a∈[0,2]時,g'(a)<0,g(a)=3a3-9a2+27在a∈[-1,0]是減函數(shù),
          當a∈[2,3]時,g'(a)>0,g(a)=3a3-9a2+27在a∈[2,3]是增函數(shù),
          因此,g(a)在(-1,3)上的最小值是g(-1)與g(2)中較小的一個,
          又∵g(-1)=15;g(2)=15
          ∴g(a)=3a3-9a2+27(-1<a<3)的最小值為15(a=2時取到).…(12分)
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          (1)、已知函數(shù)f(x)=
          1+
          2
          cos(2x-
          π
          4
          )
          sin(x+
          π
          2
          )
          .若角α在第一象限且cosα=
          3
          5
          ,求f(α)

          (2)函數(shù)f(x)=2cos2x-2
          3
          sinxcosx
          的圖象按向量
          m
          =(
          π
          6
          ,-1)
          平移后,得到一個函數(shù)g(x)的圖象,求g(x)的解析式.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=(1-
          a
          x
          )ex
          ,若同時滿足條件:
          ①?x0∈(0,+∞),x0為f(x)的一個極大值點;
          ②?x∈(8,+∞),f(x)>0.
          則實數(shù)a的取值范圍是( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=
          1+lnx
          x

          (1)如果a>0,函數(shù)在區(qū)間(a,a+
          1
          2
          )
          上存在極值,求實數(shù)a的取值范圍;
          (2)當x≥1時,不等式f(x)≥
          k
          x+1
          恒成立,求實數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=
          1+
          1
          x
          ,(x>1)
          x2+1,(-1≤x≤1)
          2x+3,(x<-1)

          (1)求f(
          1
          2
          -1
          )
          與f(f(1))的值;
          (2)若f(a)=
          3
          2
          ,求a的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          定義在D上的函數(shù)f(x)如果滿足:對任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.已知函數(shù)f(x)=
          1-m•2x1+m•2x

          (1)m=1時,求函數(shù)f(x)在(-∞,0)上的值域,并判斷f(x)在(-∞,0)上是否為有界函數(shù),請說明理由;
          (2)若函數(shù)f(x)在[0,1]上是以3為上界的有界函數(shù),求m的取值范圍.

          查看答案和解析>>

          同步練習冊答案