日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè){an}是正數(shù)組成的數(shù)列,其前n項(xiàng)和為Sn,且對(duì)于所有的正整數(shù)n,有4Sn=(an+1)2
          (I)求a1,a2的值;
          (II)求數(shù)列{an}的通項(xiàng)公式;
          (III)令b1=1,b2k=a2k-1+(-1)k,b2k+1=a2k+3k(k=1,2,3,…),求{bn}的前20項(xiàng)和T20
          分析:(I)求a1,a2的值,對(duì)n賦值即可算得;
          (II)求數(shù)列{an}的通項(xiàng)公式,需對(duì)題目中條件4Sn=(an+1)2,對(duì)任意非負(fù)正整數(shù)恒成立進(jìn)行理解,并依據(jù)其形式來構(gòu)造出4Sn-1=(an-1+1)2,作差整理出an-an-1=2判斷出數(shù)列是等差數(shù)列來.
          (III)的求解應(yīng)根據(jù)題設(shè)中的條件將前20項(xiàng)的和T20.表示出來,然后再根據(jù)具體的形式來求解.
          解答:解:(I)當(dāng)n=1時(shí),4a1=(a1+1)2
          ∴(a1-1)2=0,a1=1
          當(dāng)n=2時(shí),4(a1+a2)=(a2+1)2,
          ∴a2=3.(3分)
          (II)∵4Sn=(an+1)2,4Sn-1=(an-1+1)2,相減得:(an+an-1)(an-an-1-2)=0
          ∵{an}是正數(shù)組成的數(shù)列
          ∴an-an-1=2,∴an=2n-1.(8分)
          (Ⅲ)T20=b1+[a1+(-1)1]+(a2+31)+[a3+(-1)2]+(a4+32)+…+[a19+(-1)10]
          =1+S19+(3+32+…+39)=1+192+
          3(1-39)
          1-3
          =
          310+721
          2
          .(14分)
          點(diǎn)評(píng):本題是一個(gè)層層推進(jìn)式的題,其中第II問構(gòu)造出另一個(gè)恒等式是難點(diǎn),III的求解需根據(jù)具體形式來分組分別求解.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè){an}是正數(shù)組成的數(shù)列,其前n項(xiàng)和為Sn,并且對(duì)于所有的自然數(shù)n,an與2的等差中項(xiàng)等于Sn與2的等比中項(xiàng).
          (1)寫出數(shù)列{an}的前3項(xiàng);
          (2)求數(shù)列{an}的通項(xiàng)公式(寫出推證過程);
          (3)令bn=
          1
          2
          (
          an+1
          an
          +
          an
          an+1
          )(n∈N)
          ,求
          lim
          n→∞
          (b1+b2+…+bn-n)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè){an}是正數(shù)組成的數(shù)列,其前n項(xiàng)和為Sn,并且對(duì)于所有的n∈N+,都有8Sn=(an+2)2
          (1)寫出數(shù)列{an}的前3項(xiàng);
          (2)求數(shù)列{an}的通項(xiàng)公式(寫出推證過程);
          (3)設(shè)bn=
          4
          anan+1
          ,Tn是數(shù)列{bn}的前n項(xiàng)和,求使得Tn
          m
          20
          對(duì)所有n∈N+都成立的最小正整數(shù)m的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2006•東城區(qū)二模)設(shè){an}是正數(shù)組成的等比數(shù)列,a1+a2=1,a3+a4=4,則a4+a5=
          8
          8

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè){an } 是正數(shù)組成的數(shù)列,其前n項(xiàng)和為Sn,,所有的正整數(shù)n,滿足
          an+2
          2
          =
          2S n

          (1)求a1、a2、a3;    
          (2)猜想數(shù)列{an }的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案