日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖所示,F1、F2分別為橢圓C的左、右兩個(gè)焦點(diǎn),A、B為兩個(gè)頂點(diǎn),該橢圓的離心率為,的面積為.

          (1)求橢圓C的方程和焦點(diǎn)坐標(biāo);
          (2)作與AB平行的直線交橢圓于PQ兩點(diǎn),,求直線的方程.

          (1);(2)

          解析試題分析:(1)由離心率,的面積為.易得的值.(2)由兩點(diǎn)坐標(biāo)知,設(shè)出直線的方程為,與橢圓方程聯(lián)立,設(shè)出兩點(diǎn)坐標(biāo),利用根與系數(shù)的關(guān)系,結(jié)合求出的值.則方程可得.
          試題解析:由題設(shè)知:,又,將代入,
          得到:,即,所以,
          故橢圓方程為,                      4分
          焦點(diǎn)F1F2的坐標(biāo)分別為(-1,0)和(1,0),  5分
          (2)由(1)知,
          ,
          ∴設(shè)直線的方程為,              7分

          ,               9分
          設(shè)P (x1,y1),Q (x2,y2),則
          ,          10分
          ,11分
           
            
          解之,(驗(yàn)證判別式為正),所以直線的方程為14分
          考點(diǎn):本題主要考橢圓的幾何性質(zhì),及直線與橢圓的位置關(guān)系.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知拋物線的準(zhǔn)線與x軸交于點(diǎn)M,過(guò)點(diǎn)M作圓的兩條切線,切點(diǎn)為A、B,.
          (1)求拋物線E的方程;
          (2)過(guò)拋物線E上的點(diǎn)N作圓C的兩條切線,切點(diǎn)分別為P、Q,若P,Q,O(O為原點(diǎn))三點(diǎn)共線,求點(diǎn)N的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,已知橢圓E:的離心率為,過(guò)左焦點(diǎn)且斜率為的直線交橢圓EA,B兩點(diǎn),線段AB的中點(diǎn)為M,直線交橢圓EC,D兩點(diǎn).

          (1)求橢圓E的方程;
          (2)求證:點(diǎn)M在直線上;
          (3)是否存在實(shí)數(shù)k,使得三角形BDM的面積是三角形ACM的3倍?若存在,求出k的值;
          若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,橢圓經(jīng)過(guò)點(diǎn),其左、右頂點(diǎn)分別是,左、右焦點(diǎn)分別是、(異于、)是橢圓上的動(dòng)點(diǎn),連接交直線、兩點(diǎn),若成等比數(shù)列.

          (1)求此橢圓的離心率;
          (2)求證:以線段為直徑的圓過(guò)點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知命題,命題:方程表示焦點(diǎn)在軸上的雙曲線.
          (1)命題為真命題,求實(shí)數(shù)的取值范圍;
          (2)若命題“”為真,命題“”為假,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知拋物線C:y2=2px(p>0)的焦點(diǎn)F和橢圓的右焦點(diǎn)重合,直線過(guò)點(diǎn)F交拋物線于A、B兩點(diǎn).
          (1)求拋物線C的方程;
          (2)若直線交y軸于點(diǎn)M,且,m、n是實(shí)數(shù),對(duì)于直線,m+n是否為定值?
          若是,求出m+n的值;否則,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知橢圓的焦點(diǎn)在軸上,離心率為,對(duì)稱軸為坐標(biāo)軸,且經(jīng)過(guò)點(diǎn)
          (1)求橢圓的方程;
          (2)直線與橢圓相交于兩點(diǎn), 為原點(diǎn),在、上分別存在異于點(diǎn)的點(diǎn),使得在以為直徑的圓外,求直線斜率的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,橢圓C:=1(a>b>0)的離心率為,其左焦點(diǎn)到點(diǎn)P(2,1)的距離為.不過(guò)原點(diǎn)O的直線l與C相交于A,B兩點(diǎn),且線段AB被直線OP平分.

          (1)求橢圓C的方程;
          (2)求△ABP面積取最大值時(shí)直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知橢圓的左、右焦點(diǎn)分別為, 焦距為2,過(guò)作垂直于橢圓長(zhǎng)軸的弦長(zhǎng)為3
          (1)求橢圓的方程;
          (2)若過(guò)點(diǎn)的動(dòng)直線交橢圓于A、B兩點(diǎn),判斷是否存在直線使得為鈍角,若存在,求出直線的斜率的取值范圍

          查看答案和解析>>

          同步練習(xí)冊(cè)答案