日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】橢圓經(jīng)過點,且離心率為.

          (Ⅰ)求橢圓的方程;

          (Ⅱ)過點任作一條直線與橢圓交于不同的兩點.在軸上是否存在點,使得?若存在,求出點的坐標;若不存在,請說明理由。

          【答案】(III存在點,使得.

          【解析】試題分析:(1)由橢圓的標準方程和幾何性質(zhì),即可求解的值,得到橢圓的標準方程;

          (2)若存在點,由題意,當(dāng)直線的斜率存在,分別設(shè)為,,

          等價于,直線的斜率存在,故設(shè)直線的方程為.

          ,得,得,由,即可求得的值。

          試題解析:I

          II若存在點,使得,

          則直線的斜率存在,分別設(shè)為,.

          等價于.

          依題意,直線的斜率存在,故設(shè)直線的方程為.

          ,得.

          因為直線與橢圓有兩個交點,所以.

          ,解得.

          設(shè), ,則 ,

          當(dāng)時,

          化簡得,

          所以.

          當(dāng)時,也成立.

          所以存在點,使得.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標系xOy中,已知橢圓1ab0)的右頂點為(2,0),離心率為,P是直線x4上任一點,過點M1,0)且與PM垂直的直線交橢圓于AB兩點.

          1)求橢圓的方程;

          2)若P點的坐標為(43),求弦AB的長度;

          3)設(shè)直線PA,PM,PB的斜率分別為k1k2,k3,問:是否存在常數(shù)λ,使得k1+k3λk2?若存在,求出λ的值;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸)標準煤的幾組對照數(shù)據(jù)

          (1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

          (2)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標準煤.試根據(jù)(1)求出的線性回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標準煤?

          參考公式:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】[選修4-4:坐標系與參數(shù)方程]

          在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以原點為極點,軸正半軸為極軸建立極坐標系,點的極坐標為,斜率為的直線經(jīng)過點.

          (I)求曲線的普通方程和直線的參數(shù)方程;

          (II)設(shè)直線與曲線相交于,兩點,求線段的長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (I)若處取得極值,求過點且與處的切線平行的直線方程;

          (II)當(dāng)函數(shù)有兩個極值點,且時,總有成立,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某地區(qū)為了調(diào)查高粱的高度、粒的顏色與產(chǎn)量的關(guān)系,對700棵高粱進行抽樣調(diào)查,得到高度頻數(shù)分布表如下:

          表1:紅粒高粱頻數(shù)分布表

          農(nóng)作物高度()

          頻 數(shù)

          2

          5

          14

          13

          4

          2

          表2:白粒高粱頻數(shù)分布表

          農(nóng)作物高度()

          頻 數(shù)

          1

          7

          12

          6

          3

          1

          (1)估計這700棵高粱中紅粒高粱的棵數(shù);

          (2)估計這700棵高粱中高粱高()在的概率;

          (3)在樣本的紅粒高粱中,從高度(單位:)在中任選3棵,設(shè)表示所選3棵中高(單位:)在的棵數(shù),求的分布列和數(shù)學(xué)期望

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】隨著我國經(jīng)濟實力的不斷提升,居民收人也在不斷增加。某家庭2018年全年的收入與2014年全年的收入相比增加了一倍,實現(xiàn)翻番.同時該家庭的消費結(jié)構(gòu)隨之也發(fā)生了變化,現(xiàn)統(tǒng)計了該家庭這兩年不同品類的消費額占全年總收入的比例,得到了如下折線圖:

          則下列結(jié)論中正確的是( )

          A. 該家庭2018年食品的消費額是2014年食品的消費額的一半

          B. 該家庭2018年教育醫(yī)療的消費額與2014年教育醫(yī)療的消費額相當(dāng)

          C. 該家庭2018年休閑旅游的消費額是2014年休閑旅游的消費額的五倍

          D. 該家庭2018年生活用品的消費額是2014年生活用品的消費額的兩倍

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖(1),等腰梯形,,,分別是的兩個三等分點,若把等腰梯形沿虛線、折起,使得點和點重合,記為點, 如圖(2).

          1)求證:平面平面

          2)求平面與平面所成銳二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,圓的極坐標方程為.

          (1)求直線的普通方程以及圓的直角坐標方程;

          (2)若直線與圓交于兩點,求線段的長.

          查看答案和解析>>

          同步練習(xí)冊答案