日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若函數(shù)f(x)=(x2-3)ex,給出下面四個(gè)結(jié)論:
          ①f(-3)是f(x)的極大值,f(1)是f(x)的極小值;
          ②f(x)<0的解集為{x|-
          3
          <x<
          3
          };
          ③f(x)沒有最小值,也沒有最大值;
          ④f(x)有最小值,沒有最大值,
          其中正確結(jié)論的序號(hào)有
          ①②③
          ①②③
          分析:①求函數(shù)的導(dǎo)數(shù),判斷函數(shù)的極值.②由f(x)<0,解不等式 即可.③利用函數(shù)的單調(diào)性和最值之間的關(guān)系判斷函數(shù)的最值情況.④利用導(dǎo)數(shù)研究函數(shù)的最值.
          解答:解:函數(shù)的導(dǎo)數(shù)為f'(x)=2xex+(x2-3)ex=(x2+2x-3)ex
          ①由f'(x)>0得,x>1或x<-3,此時(shí)函數(shù)單調(diào)遞增.由f'(x)<0得-3<x<1,此時(shí)函數(shù)單調(diào)遞減,所以f(-3)是f(x)的極大值,f(1)是f(x)的極小值,所以①正確.
          ②由f(x)<0,得(x2-3)ex<0,即x2-3<0,解得-
          3
          <x<
          3
          ,所以②正確.
          ③由①知,函數(shù)在(1,+∞)和(-∞,-3)上單調(diào)遞增,所以函數(shù)f(x)沒有最小值,也沒有最大值,所以③正確.
          ④由③(x)沒有最小值,也沒有最大值,所以④錯(cuò)誤.
          故答案為:①②③.
          點(diǎn)評(píng):本題主要考查利用導(dǎo)數(shù)研究函數(shù)的性質(zhì),要求熟練掌握導(dǎo)數(shù)的應(yīng)用.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
          (1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
          2
          ,求a的值;
          (2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
          (3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
          2
          2
          ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          若函數(shù) fx)=a x (a>0,a≠1 ) 的部分對(duì)應(yīng)值如表:

          x

          -2

          0

          fx

          0.592

          1

          則不等  式f-1(│x│<0)的解集是        ()

          A. {x│-1<x<1}                  B. {xx<-1或x>1}         

          C. {x│0<x<1}                    D. {x│-1<x<0或0<x<1}

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:單選題

          若函數(shù)f(x)對(duì)于任意x∈[a,b],恒有|f(x)-f(a)-數(shù)學(xué)公式(x-a)|≤T(T為常數(shù))成立,則稱函數(shù)f(x)在[a,b]上具有“T級(jí)線性逼近”.下列函數(shù)中:
          ①f(x)=2x+1;
          ②f(x)=x2;
          ③f(x)=數(shù)學(xué)公式;
          ④f(x)=x3
          則在區(qū)間[1,2]上具有“數(shù)學(xué)公式級(jí)線性逼近”的函數(shù)的個(gè)數(shù)為


          1. A.
            1
          2. B.
            2
          3. C.
            3
          4. D.
            4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:徐州模擬 題型:解答題

          設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
          (1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為2
          2
          ,求a的值;
          (2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
          (3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
          2
          2
          ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2013年福建省寧德市高三質(zhì)量檢查數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

          若函數(shù)f(x)對(duì)于任意x∈[a,b],恒有|f(x)-f(a)-(x-a)|≤T(T為常數(shù))成立,則稱函數(shù)f(x)在[a,b]上具有“T級(jí)線性逼近”.下列函數(shù)中:
          ①f(x)=2x+1;
          ②f(x)=x2;
          ③f(x)=
          ④f(x)=x3
          則在區(qū)間[1,2]上具有“級(jí)線性逼近”的函數(shù)的個(gè)數(shù)為( )
          A.1
          B.2
          C.3
          D.4

          查看答案和解析>>

          同步練習(xí)冊(cè)答案