日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)數(shù)列{xn}滿足xn≠1且(n∈N*),前n項(xiàng)和為Sn.已知點(diǎn)p1(x1,S1),P2(x2,s2),…Pn(xn,sn)都在直線y=kx+b上(其中常數(shù)b,k且k≠1,b≠0),又yn=log
          (1)求證:數(shù)列{xn]是等比數(shù)列;
          (2)若yn=18-3n,求實(shí)數(shù)k,b的值;
          (3)如果存在t、s∈N*,s≠t使得點(diǎn)(t,yt)和點(diǎn)(s,yt)都在直線y=2x+1上.問(wèn)是否存在正整數(shù)M,當(dāng)n>M時(shí),xn>1恒成立?若存在,求出M的最小值,若不存在,請(qǐng)說(shuō)明理由.
          【答案】分析:(1)由an+1=Sn+1-Sn著手考慮,把點(diǎn)Pn、Pn+1的坐標(biāo)代入直線y=kx+b,然后兩式相減得xn+1與xn的關(guān)系式,即可得到結(jié)論;(2)由(1)知{xn}是等比數(shù)列,則根據(jù)條件消去yn得xn與n的關(guān)系式,此時(shí)與等比數(shù)列通項(xiàng)xn=x1qn-1相比較,易得x1與q,進(jìn)而可求得k與b.
          (3)由{xn}是等比數(shù)列且yn=log0.5xn可得數(shù)列{yn}為等差數(shù)列;當(dāng)n>M時(shí),xn>1恒成立問(wèn)題應(yīng)利用yn=log0.5xn轉(zhuǎn)化為yn<0恒成立的問(wèn)題,列不等式組,解出M,即可得到結(jié)論.
          解答:(1)證明:∵點(diǎn)Pn(xn,Sn),Pn+1(xn+1,Sn+1)都在直線y=kx+b上,
          ∴Sn=kxn+b,Sn+1=kxn+1+b
          兩式相減得Sn+1-Sn=kxn+1-kxn,即xn+1=kxn+1-kxn,
          ∵常數(shù)k≠0,且k≠1,∴=(非零常數(shù))
          ∴數(shù)列{xn]是等比數(shù)列;
          (2)解:由yn=log0.5xn,得xn=(yn=8n-6,
          =8,得k=
          又Pn在直線上,得Sn=kxn+b,
          令n=1得b=S1-x1=-x1=-;
          (3)解:∵yn=log0.5xn,∴當(dāng)n>M時(shí),xn>1恒成立等價(jià)于yn<0恒成立.
          ∵存在t,s∈N*,使得(t,ys)和(s,yt)都在y=2x+1上,
          ∴ys=2t+1 ①,yt=2s+1 ②.
          ①-②得:ys-yt=2(t-s),
          ∵s≠t,∴{yn}是公差d=-2<0的等差數(shù)列
          ①+②得:ys+yt=2(t+s)+2,
          又ys+yt=y1+(s-1)•(-2)+y1+(t-1)•(-2)=2y1-2(s+t)+4
          由2y1-2(s+t)+4=2(t+s)+2,得y1=2(t+s)-1>0,
          即:數(shù)列{yn}是首項(xiàng)為正,公差為負(fù)的等差數(shù)列,
          所以一定存在一個(gè)最小自然數(shù)M,使,即
           解得t+s-<M≤t+s+
          ∵M(jìn)∈N*,∴M=t+s.
          即存在自然數(shù)M,其最小值為t+s,使得當(dāng)n>M時(shí),xn>1恒成立.
          點(diǎn)評(píng):本題考查等比數(shù)列的證明,考查等差數(shù)列,考查存在性問(wèn)題,考查學(xué)生分析解決問(wèn)題的能力,難度較大.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•瀘州二模)設(shè)a>0,函數(shù)f(x)=
          1
          x2+a

          (1)求證:關(guān)于x的方程f(x)=
          1
          x-1
          沒(méi)有實(shí)數(shù)根;
          (2)求函數(shù)g(x)=
          1
          3
          ax3+ax+
          1
          f(x)
          的單調(diào)區(qū)間;
          (3)設(shè)數(shù)列{xn}滿足x1=0,xn+1=f(xn)(n∈N*),當(dāng)a=2且0<xk
          1
          2
          (k=2,3,4,…)
          ,證明:對(duì)任意m∈N*都有|xm+k-xk|<
          1
          3•4k-1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012年四川省瀘州市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

          設(shè)a>0,函數(shù)
          (1)求證:關(guān)于x的方程沒(méi)有實(shí)數(shù)根;
          (2)求函數(shù)的單調(diào)區(qū)間;
          (3)設(shè)數(shù)列{xn}滿足,當(dāng)a=2且,證明:對(duì)任意m∈N*都有

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:四川省模擬題 題型:解答題

          設(shè)a>0,函數(shù)
          (1)求證:關(guān)于x的方程沒(méi)有實(shí)數(shù)根;
          (2)求函數(shù)的單調(diào)區(qū)間;
          (3)設(shè)數(shù)列{xn}滿足,當(dāng)a=2且,證明:對(duì)任意m∈N*都有

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣西南寧二中、玉高、柳高高三(上)第一次聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

          設(shè)函數(shù)f(x)定義如下表,數(shù)列{xn}滿足x=5,且對(duì)任意自然數(shù)均有xn+1=f(xn),則x2012的值為( )
          x12345
          f(x)41352

          A.2
          B.3
          C.4
          D.5

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省泉州市季延中學(xué)高二(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

          設(shè)函數(shù)f(x)定義如下表,數(shù)列{xn}滿足x=5,且對(duì)任意自然數(shù)均有xn+1=f(xn),則x2004的值為( )

          A.1
          B.2
          C.4
          D.5

          查看答案和解析>>

          同步練習(xí)冊(cè)答案