【題目】已知點(diǎn)
,圓
:
,過
的動(dòng)直線
與⊙
交
兩點(diǎn),線段
中點(diǎn)為
,
為坐標(biāo)原點(diǎn)。
(1)求點(diǎn)的軌跡方程;
(2)當(dāng)時(shí),求直線
的方程以及△
面積。
【答案】(Ⅰ)(Ⅱ)直線
的方程為3x-y-8=0,△
面積是
【解析】試題分析:(Ⅰ)圓C的方程可化為(x-4)2+y2=16,由此能求出圓心為C(4,0),半徑為4,設(shè)M(x,y),求出向量CM,MP的坐標(biāo),由運(yùn)用向量的數(shù)量積的坐標(biāo)表示,化簡整理求出M的軌跡方程;
(Ⅱ)由(Ⅰ)知M的軌跡是以點(diǎn)N(3,-1)為圓心, 為半徑的圓.由于|OP|=|OM|,故O在線段PM的垂直平分線上,可得ON⊥PM,由直線垂直的條件:斜率之積為-1,再由點(diǎn)斜式方程可得直線l的方程.利用點(diǎn)到直線距離公式結(jié)合已知條件能求出△POM的面積
試題解析:
(Ⅰ)圓C的方程可化為: ,所以圓心C(4,0)半徑為4。
設(shè)M(x,y),則(x-4,y),
則由條件知,
故(x-4)(2-x)+y(2-y)=0,即。由于點(diǎn)P在圓C的內(nèi)部,所以M的軌跡方程是
。
(Ⅱ)由(Ⅰ)可知M的軌跡是以點(diǎn)N(3,-1)為圓心,以為半徑的圓。又
,故O在線段PM的垂直平分線上,顯然P在圓N上,從而ON⊥PM。KON=
,所以直線
的斜率為3,故直線
的方程為3x-y-8=0.又
=
,O到
的距離為
,由勾股定理可得|PM|=
,所以△
面積是
。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】供電部門對(duì)某社區(qū)位居民2016年11月份人均用電情況進(jìn)行統(tǒng)計(jì)后,按人均用電量分為
,
,
,
,
五組,整理得到如下的頻率分布直方圖,則下列說法錯(cuò)誤的是( )
A. 11月份人均用電量人數(shù)最多的一組有人
B. 11月份人均用電量不低于度的有
人
C. 11月份人均用電量為度
D. 在這位居民中任選
位協(xié)助收費(fèi),選到的居民用電量在
一組的概率為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,其中常數(shù)
.
(1)當(dāng)時(shí),求函數(shù)
的極值;
(2)若函數(shù)有兩個(gè)零點(diǎn)
,求證:
;
(3)求證: .
選做題:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E的中心在原點(diǎn),焦點(diǎn)在x軸,焦距為2,且長軸長是短軸長的倍.
(Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)P(2,0),過橢圓E左焦點(diǎn)F的直線l交E于A、B兩點(diǎn),若對(duì)滿足條件的任意直線l,不等式 ≤λ(λ∈R)恒成立,求λ的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的方程為
(
,
為常數(shù)).
(1)判斷曲線的形狀;
(2)設(shè)曲線分別與
軸,
軸交于點(diǎn)
,
(
,
不同于原點(diǎn)
),試判斷
的面積
是否為定值?并證明你的判斷;
(3)設(shè)直線:
與曲線
交于不同的兩點(diǎn)
,
,且
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(I)求曲線在點(diǎn)
處的切線方程.
(II)求證:當(dāng)時(shí),
.
(III)設(shè)實(shí)數(shù)使得
對(duì)
恒成立,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線.
(1)若曲線C在點(diǎn)處的切線為
,求實(shí)數(shù)
和
的值;
(2)對(duì)任意實(shí)數(shù),曲線
總在直線
:
的上方,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
(Ⅰ)當(dāng)(
為自然對(duì)數(shù)的底數(shù))時(shí),求
的極小值;
(Ⅱ)若函數(shù)存在唯一零點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知矩陣將直線l:x+y-1=0變換成直線l′.
(1)求直線l′的方程;
(2)判斷矩陣A是否可逆?若可逆,求出矩陣A的逆矩陣A-1;若不可逆,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com