日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,已知ABCDEF為正六邊形,若以C,F(xiàn)為焦點(diǎn)的雙曲線恰好經(jīng)過(guò)A,B,D,E四點(diǎn),則該雙曲線的離心率為
           
          分析:正六邊形ABCDEF的邊長(zhǎng)為2,以FC為x軸,以FC的垂直平分線為y軸建立平面直角坐標(biāo)系,根據(jù)題設(shè)條件能夠求出雙曲線的實(shí)半軸a和半焦距c,由此能夠求出該雙曲線的離心率.
          解答:解:設(shè)正六邊形ABCDEF的邊長(zhǎng)為2,以FC為x軸,以FC的垂直平分線為y軸建立平面直角坐標(biāo)系,
          由題意可知,B(1,
          3
          ),F(xiàn)(-2,0),C(2,0),c=2.
          ∴|BF|=
          (1+2)2+(
          3
          -0)
          2
          =2
          3
          ,|BC|=
          (1-2)2+(
          3
          -0)
          2
          =2
          ,
          2a=|BF|-|BC|=2
          3
          -2

          a=
          3
          -1

          e=
          c
          a
          =
          2
          3
          -1
          =
          3
          +1

          答案:
          3
          +1
          點(diǎn)評(píng):恰當(dāng)?shù)剡x取平面直角坐標(biāo)系,能夠簡(jiǎn)化運(yùn)算.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,三角形ACD是正三角形,且AD=DE=2,AB=1.
          (1)求直線AE與平面CDE所成角的大。ㄓ梅慈呛瘮(shù)值表示);
          (2)求多面體ABCDE的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知多面體ABCDE中,AE⊥平面ABC,AE
          .
          .
          1
          2
          CD
          ,△ABC是正三角形.
          (Ⅰ)求證:平面BDE⊥平面BCD;
          (Ⅱ)求平面ABE與平面BCD所成的銳二面角的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,F(xiàn)為CD的中點(diǎn).
          (Ⅰ)求證:AF⊥平面CDE;
          (Ⅱ)求面ACD和面BCE所成銳二面角的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,F(xiàn)為CE的中點(diǎn).
          ( I)求證:求證AF⊥CD;
          (II)求多面體ABCDE的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知多面體ABCDE中,AB⊥面ACD,DE⊥面ACD,三角形ACD是正三角形,且AD=DE=2,AB=1.
          (Ⅰ)求證:AB∥面CDE;
          (Ⅱ)在線段AC上找一點(diǎn)F使得AC⊥面DEF,并加以證明;
          (Ⅲ)在線段CD是否存在一點(diǎn)M,使得BC∥面AEM,若存在,求出CM的長(zhǎng)度;否則,說(shuō)明理由.

          查看答案和解析>>